Physics of the Solid State

, Volume 60, Issue 12, pp 2471–2480 | Cite as

Dynamics of the Magnetic Moment of an Anisotropic Nanoparticle and a Plane Lattice in an Alternating Field

  • A. M. ShutyiEmail author
  • D. I. Sementsov


Dynamic regimes of the magnetic moment of a nanoparticle with an uniaxial or cubic anisotropy are studied. Regular oscillations with different attractor shapes and periods and regimes of chaotic and quasi-periodical dynamics are revealed. The dynamic bistability states are discovered; the transitions between the oscillation regimes belonging to bistability are obtained by means of the pulsed change in the alternating field amplitude. It has been shown that the 90°-remagnatization of the nanoparticle is caused by the alternating field action. The nanoparticle lattice parameters at which the dipole interaction effect on the oscillation regimes of magnetic momenta can be neglected are revealed.



This work was supported by the Ministry of Education and Science of the Russian Federation, project 3.6825.2017/BCh.


  1. 1.
    R. Skomski, J. Phys.: Condens. Matter. 15, R841 (2003).ADSGoogle Scholar
  2. 2.
    E. Z. Meilikhov and R. M. Farzetdinova, J. Exp. Theor. Phys. 95, 751 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    P. V. Bondarenko, A. Yu. Galkin, and B. A. Ivanov, J. Exp. Theor. Phys. 112, 986 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Fraerman, Phys. Usp. 55, 1255 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Dzian and B. A. Ivanov, J. Exp. Theor. Phys. 115, 854 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    E. Z. Meilikhov and R. M. Farzetdinova, Phys. Solid State 56, 2408 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    Yu. P. Ivanov, A. I. Il’in, E. V. Pustovalov, and L. A. Chebotkeich, Phys. Solid State 52, 1694 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    V. A. Kosobukin and B. B. Krichevtsov, Phys. Solid State 52, 813 (2010).CrossRefGoogle Scholar
  9. 9.
    S. A. Gusev, Yu. N. Nozdrin, M. V. Sapozhnikov, and A. A. Fraerman, Phys. Usp. 43, 288 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    L. N. Kotov, L. S. Nosov, and F. F. Asadullin, Tech. Phys. 53, 592 (2008).CrossRefGoogle Scholar
  11. 11.
    E. De Biasi, E. Lima, Jr., C. A. Ramos A. Butera, and R. D. Zysler, J. Magn. Magn. Mater. 326, 138 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    I. R. Karetnikova, I. M. Nefedov, M. V. Sapozhnikov, A. A. Fraerman, and I. A. Sheremevskii, Phys. Solid State 43, 2115 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    A. M. Shutyi, S. V. Eliseeva, and D. I. Sementsov, Phys. Rev. B 91, 024421 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    A. M. Shutyi and D. I. Sementsov, J. Magn. Magn. Mater. 401, 1033 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    A. M. Shutyi, J. Exp. Theor. Phys. 118, 924 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    A. M. Shutyi and D. I. Sementsov, JETP Lett. 99, 695 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    A. G. Gurevich and G. A. Melkov, Magnetic Oscillation and Waves (Nauka, Moscow, 1994) [in Russian].Google Scholar
  18. 18.
    A. Yu. Loskutov and A. S. Mikhailov, Principles of the Complex System Theory (RKhD, Izhevsk, 2008) [in Russian].Google Scholar
  19. 19.
    D. I. Sementsov and A. M. Shutyi, Phys. Usp. 50, 793 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ulyanovsk State UniversityUlyanovskRussia

Personalised recommendations