Physics of the Solid State

, Volume 60, Issue 12, pp 2349–2357 | Cite as

Friction Force and Radiative Heat Exchange in a System of Two Parallel Plates in Relative Motion: Corollaries of the Levine–Polevoi–Rytov Theory

  • G. V. DedkovEmail author
  • A. A. KyasovEmail author


It has been shown that the fundamental results obtained in the works by Levine–Polevoi–Rytov (1980) and Rytov (1990) adequately describe the rate of radiative heat exchange and frictional force in a system of two thick parallel plates in relative motion, in full agreement with the results obtained by other authors later. A numerically calculated friction force for Drude metals turns out to be higher by a factor of 107 than the early result obtained by Polevoi. In addition, the friction force significantly increases with increasing the conductivity of the plates or increasing the relaxation time of electrons with decreasing temperature.



  1. 1.
    M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Fluctuations in Electrodynamics (Nauka, Moscow, 1967) [in Russian].Google Scholar
  2. 2.
    S. M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Akad. Nauk SSSR, Moscow, 1953) [in Russian].Google Scholar
  3. 3.
    M. L. Levin, V. G. Polevoi, and S. M. Rytov, Sov. Phys. JETP 52, 1054 (1980).ADSGoogle Scholar
  4. 4.
    V. G. Polevoi, Heat Exchange by Fluctuation Electromagnetic Field (Nauka, Moscow, 1990) [in Russian].Google Scholar
  5. 5.
    V. G. Polevoi, Sov. Phys. JETP 71, 1119 (1990).Google Scholar
  6. 6.
    D. Polder and M. van Hove, Phys. Rev. B 4, 3303 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    J. J. Loomis and H. J. Maris, Phys. Rev. B 50, 18517 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    K. Park and Z. Zhang, Front. Heat Mass Transfer 4, 013001 (2013).Google Scholar
  9. 9.
    V. B. Bezerra, G. Bimonte, G. L. Klimchitskaya, V. M. Mostepanenko, and C. Romero, Eur. Phys. J. C 52, 701 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    B. N. J. Persson and Zhang Zhenyu, Phys. Rev. B 57, 7327 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    A. I. Volokitin and B. N. J. Persson, J. Phys. C 11, 345 (1999).Google Scholar
  13. 13.
    J. B. Pendry, J. Phys. C 9, 10301 (1997).Google Scholar
  14. 14.
    V. E. Teodorovich, Proc. R. Soc. London, Ser. A 362, 71 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    T. G. Philbin and U. Leonhardt, New J. Phys. 11, 03035 (2009); arXiv: 094.2148.Google Scholar
  16. 16.
    A. I. Volokitin and B. N. J. Persson, New J. Phys. 11, 033035 (2009).CrossRefGoogle Scholar
  17. 17.
    J. B. Pendry, New J. Phys. 12, 033028 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    J. S. Hoye and I. Brevik, Entropy 15, 3045 (2013).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    K. A. Milton, J. S. Hoye, and I. Brevik, Symmetry 8, 29 (2016).CrossRefGoogle Scholar
  20. 20.
    G. V. Dedkov and A. A. Kyasov, Phys. Usp. 60, 559 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    K. A. Milton, R. Guerodt, G. L. Ingold, A. Lambrecht, and S. Reynaud, J. Phys.: Condens. Matter 27, 214003 (2015).ADSGoogle Scholar
  22. 22.
    M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the Casimir Effect (Oxford Univ. Press, Oxford, UK, 2009).CrossRefzbMATHGoogle Scholar
  23. 23.
    C.-C. Chang, A. A. Banishev, R. Castillo-Garza, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mo-hideen, Phys. Rev. B 85, 165443 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. B 88, 155410 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    B. C. Stipe, H. J. Mamin, T. D. Stowe, Y. W. Kenny, and D. Rugar, Phys. Lett. 87, 096801 (2001).CrossRefGoogle Scholar
  26. 26.
    B. V. Derjaguin, Kolloid Z. 69, 155 (1934).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kabardino-Balkarian State UniversityNalchikRussia

Personalised recommendations