Skip to main content
Log in

Features of Spin Waves Focusing in Ferromagnets

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract—Features of focusing spin waves in ferromagnets with magnetic moment exchange interaction with the closest neighbors and second neighbors are explored. It is shown that in the long-wave approximation, no spin wave focusing occurs: it is observed only in the wavevectors in the second half of the Brillouin zone (at aq ≥ π/2, where a is the lattice constant, q is the value of wavevector). Additionally, it is shown that magnons in such system are focused along directions [110], and are defocused in directions [100]. It is found that the external magnetic field and the magnetic anisotropy field do not cause changes in directions of magnon focusing. When the parameter of exchange interaction with the second neighbors near directions [110] and [111] is negative, magnons form a caustic, near which the intensity of the spin-wave field surges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. Lett. 23, 416 (1969).

    Article  ADS  Google Scholar 

  2. B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. B 3, 1462 (1971).

    Article  ADS  Google Scholar 

  3. J. P. Wolfe, Imaging Phonons. Acoustic Wave Propagation in Solids (Cambridge Univ. Press, New York, 1998).

    Book  Google Scholar 

  4. H. J. Maris, J. Acoust. Soc. Am. 50, 812 (1971).

    Article  ADS  Google Scholar 

  5. Cz. Jasiukiewicz, T. Paszkiewicz, and D. Lehmann, Z. Phys. B: Condens. Matter 96, 213 (1994).

    Article  ADS  Google Scholar 

  6. E. Held, W. Klein, and R. P. Huebener, Z. Phys. B: Condens. Matter 75, 223 (1989).

    Article  ADS  Google Scholar 

  7. O. Büttner, M. Bauer, S. O. Demokritov, B. Hillebrands, Yu. S. Kivshar, V. Grimalsky, Yu. Rapoport, M. P. Kostylev, B. A. Kalinikos, and A. N. Slavin, J. Appl. Phys. 87, 5088 (2000).

    Article  ADS  Google Scholar 

  8. V. E. Demidov, S. O. Demokritov, K. Rott, P. Krzysteczko, and G. Reiss, Appl. Phys. Lett. 91, 252504 (2007).

    Article  ADS  Google Scholar 

  9. V. Veerakumar and R. E. Camley, Phys. Rev. B 74, 214401 (2006).

    Article  ADS  Google Scholar 

  10. V. Veerakumar and R. E. Camley, Phys. Rev. B 81, 174432 (2010).

    Article  ADS  Google Scholar 

  11. J. J. Bible and R. E. Camley, Phys. Rev. B 95, 224412 (2017).

    Article  ADS  Google Scholar 

  12. C. S. Davies, A. V. Sadovnikov, S. V. Grishin, Yu. P. Sharaevskii, S. A. Nikitov, and V. V. Kruglyak, Appl. Phys. Lett. 107, 162401 (2015).

    Article  ADS  Google Scholar 

  13. R. Gieniusz, H. Ulrichs, V. D. Bessonov, U. Guzo-wska, A. I. Stognii, and A. Maziewski, Appl. Phys. Lett. 102, 102409 (2013).

    Article  ADS  Google Scholar 

  14. E. A. Turov, Physical Properties of Magnetically Ordered Crystals (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  15. A. G. Every, Phys. Rev. B 24, 3456 (1981).

    Article  ADS  Google Scholar 

  16. J. Philip and K. S. Viswanathan, Phys. Rev. B 17, 4969 (1978).

    Article  ADS  Google Scholar 

  17. M. Lax and V. Narayanamurti, Phys. Rev. B 22, 4876 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  18. G. A. Northrop and J. P. Wolfe, Phys. Rev. B 22, 6196 (1980).

    Article  ADS  Google Scholar 

  19. I. I. Kuleyev, S. M. Bakharev, I. G. Kuleyev, and V. V. Ustinov, Phys. Status Solidi 59, 1600263 (2017).

    Google Scholar 

  20. I. I. Kuleev, S. M. Bakharev, I. G. Kuleev, and V. V. Ustinov, Phys. Met. Metallogr. 118, 10 (2017).

    Article  ADS  Google Scholar 

  21. J. Smit and H. P. J. Wijn, Ferrites (Philips Technical Library, Eindhoven, 1959).

    Google Scholar 

  22. F. H. de Leeuw, R. van den Doel, and V. Enz, Rep. Prog. Phys. 43, 691 (1980).

    Article  ADS  Google Scholar 

  23. T. O’Dell, Ferromagnetodynamics: The Dynamics of Magnetic Bubbles, Domains, and Domain Walls (Wiley, Chichester, 1981).

    Book  Google Scholar 

  24. Ch. Kittel, Quantum Theory of Solids (Wiley, New York, 1963; Nauka, Moscow, 1967).

  25. Ferromagnetic Resonance, Collection of Articles, Ed. by S. V. Vonsovskii (GIFML, Moscow, 1961) [in Russian].

    Google Scholar 

  26. A. V. Pogorelov, Differential Geometry (Nauka, Moscow, 1974; Noordhoff, Groningen, 1959).

  27. V. I. Arnol’d, Catastrophe Theory (Nauka, Moscow, 1990; Springer, Berlin, Heidelberg, 1984).

  28. V. Cherepanov, I. Kolokolov, and V. L’vov, Phys. Rep. 229, 81 (1993).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was accomplished within the state quota, topic Spin AAAAA18-118020290104-2, and project no. 32-1.1.3.5 within the Program of Basic Research of the Presidium of the Russian Academy of Sciences, under the Contract with the Ministry of Education and Science of Russia 14.Z50.31.0025, and supported by the Russian Foundation for Basic Research, project no. 18-32-00139 mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Bakharev.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakharev, S.M., Savchenko, S.P. & Tankeev, A.P. Features of Spin Waves Focusing in Ferromagnets. Phys. Solid State 60, 2460–2470 (2018). https://doi.org/10.1134/S1063783418120053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418120053

Navigation