Skip to main content
Log in

Superconducting Heterostructures Interlayered with a Material with Strong Spin–Orbit Interaction

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract—Superconducting heterostructures interlayered with a material with strong spin–orbit interaction are studied. As materials with strong spin–orbit interaction, we choose strontium iridates featuring the Ruddlesden–Popper structure (Srn + 1IrnO3n + 1; n = 1, 2, ∞): paramagnetic metal SrIrO3 and magnetic insulator Sr2IrO4. Using laser ablation, epitaxial films of these materials are obtained, as well as heterostructures based on epitaxial films of cuprate superconducting YBa2Cu3Ox. For electrical measurements, mesa-structures of micrometer sizes with top electrodes made of Au/Nb bilayer are fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. S. J. Moon, H. Jin, K. W. Kim, W. S. Choi, Y. S. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, and T. W. Noh, Phys. Rev. Lett. 101, 226402 (2008).

    Article  ADS  Google Scholar 

  2. W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Ann. Rev. Condens. Matter. Phys. 5, 57 (2014).

    Article  ADS  Google Scholar 

  3. R. Schaffer, E. Lee, B. Yang, and Y. Kim, Rep. Prog. Phys. 79, 094504 (2016).

    Article  ADS  Google Scholar 

  4. A. Shitade, H. Katsura, J. Kuneš, X.-L. Qi, S.‑C. Zhang, and N. Nagaosa, Phys. Rev. Lett. 102, 256403 (2009).

    Article  ADS  Google Scholar 

  5. D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Nat. Commun. 2, 596 (2011).

    Article  ADS  Google Scholar 

  6. F. Wang and Y. Ran, Phys. Rev. B 84, 241103 (2011).

    Article  ADS  Google Scholar 

  7. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  8. J. G. Kim, D. Casa, M. H. Upton, T. Gog, Y.-J. Kim, J. F. Mitchell, M. van Veenendaal, M. Daghofer, J. van den Brink, G. Khaliullin, and B. J. Kim, Phys. Rev. Lett. 108, 177003 (2012).

    Article  ADS  Google Scholar 

  9. B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Science (Washington, DC, U. S.) 323, 1329 (2009).

    Article  ADS  Google Scholar 

  10. G. Cao, Y. Xin, C. S. Alexander, J. E. Crow, P. Schlottmann, M. K. Crawford, R. L. Harlow, and W. Marshall, Phys. Rev. B 66, 214412 (2002).

    Article  ADS  Google Scholar 

  11. M. Longo, J. A. Kafalas, and R. J. Arnott. J, Solid State Chem. 3, 174 (1971).

    Article  ADS  Google Scholar 

  12. A. M. Petrzhik, G. Cristiani, G. Logvenov, A. E. Pestun, N. V. Andreev, Yu. V. Kislinskii, and G. A. Ovsyannikov, Tech. Phys. Lett. 43, 554 (2017).

    Article  ADS  Google Scholar 

  13. C. Lu, A. Quindeau, H. Deniz, D. Preziosi, D. Hesse, and M. Alexe, Appl. Phys. Lett. 105, 082407 (2014).

    Article  ADS  Google Scholar 

  14. Perovskite Materials–Synthesis, Characterisation, Properties, and Applications, Ed. by L. Pan and G. Zhu (InTech, Rijeka, Croatia, 2016).

    Google Scholar 

  15. Feng Ye, Songxue Chi, B. C. Chakoumakos, J. A. Fernandez-Baca, Tongfei Qi, and G. Cao, Phys. Rev. B 87, 140406(R) (2013).

  16. X. Liu, Y. Cao, B. Pal, Middey, M. Kareev, Y. Choi, P. Shafer, D. Haskel, E. Arenholz, and J. Chakhalian, Phys. Rev. Mater 1, 075004 (2017).

    Article  Google Scholar 

  17. Yu. V. Kislinskii, G. A. Ovsyannikov, A. M. Petrzhik, K. Y. Constantinian, N. V. Andreev, and T. A. Sviridova, Phys. Solid State 57, 2519 (2015).

    Article  ADS  Google Scholar 

  18. J. Nichols, J. Terzic, E. G. Bittle, O. B. Korneta, L. E. de Long, J. W. Brill, G. Cao, and S. S. A. Seo, Appl. Phys. Lett. 102, 141908 (2013).

    Article  ADS  Google Scholar 

  19. J. H. Gruenewald, J. Nichols, J. Terzic, G. Cao, J. W. Brill, and S. S. Ambrose, J. Mater. Res. 29, 2491 (2014).

    Article  ADS  Google Scholar 

  20. F. X. Wu, J. Zhou, L. Y. Zhang, Y. B. Chen, S. T. Zhang, Z. B. Gu, S. H. Yao, and Y. F. Chen, J. Phys.: Condens. Matter 25, 125604 (2013).

    ADS  Google Scholar 

  21. G. Zhao, L. X. Yang, Y. Yu, F. Y. Li, R. C. Yu, Z. Fang, L. C. Chen, and C. Q. Jina, J. Appl. Phys. 103, 103706 (2008).

    Article  ADS  Google Scholar 

  22. A. Biswas, Ki-Seok Kim, and Yoon Hee Jeong, J. Appl. Phys. 116, 213704 (2014).

    Article  ADS  Google Scholar 

  23. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  24. G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).

    Article  ADS  Google Scholar 

  25. Y. S. Lee, J. S. Lee, K. W. Kim, T. W. Noh, J. Yu, E. J. Choi, G. Cao, and J. E. Crow, Europhys. Lett. 55, 280 (2001).

    Article  ADS  Google Scholar 

  26. P. Komissinskiy, G. A. Ovsyannikov, K. Y. Constantinian, Y. V. Kislinski, I. V. Borisenko, I. I. Soloviev, V. K. Kornev, E. Goldobin, and D. Winkler, Phys. Rev. B 78, 024501 (2008).

    Article  ADS  Google Scholar 

  27. W. F. Brinkman, R. C. Dynes, and J. M. Rowell, J. Appl. Phys. 41, 1915 (1970).

    Article  ADS  Google Scholar 

  28. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).

    Article  ADS  Google Scholar 

  29. G. A. Ovsyannikov, Yu. V. Kislinskii, K. Y. Constantinian, A. V. Shadrin, V. V. Demidov, and A. M. Petrzhik, J. Exp. Theor. Phys. 124, 628 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported in part by the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Ovsyannikov.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsyannikov, G.A., Grishin, A.S., Constantinian, K.Y. et al. Superconducting Heterostructures Interlayered with a Material with Strong Spin–Orbit Interaction. Phys. Solid State 60, 2166–2172 (2018). https://doi.org/10.1134/S1063783418110227

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418110227

Keywords

Navigation