Skip to main content
Log in

Superconducting Properties of Indium Nanostructured in Pores of Thin Films of SiO2 Microspheres

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Samples of a superconducting indium nanocomposite based on a thin-film porous dielectric matrix prepared by the Langmuir–Blodgett method are obtained for the first time, and their low-temperature electrophysical and magnetic properties are studied. Films with thickness b ≤ 5 μm were made from silicon dioxide spheres with diameter D = 200 and 250 nm; indium was introduced into the pores of the films from the melt at a pressure of P ≤ 5 kbar. Thus, a three-dimensional weakly ordered structure of indium nanogranules was created in the pores, forming a continuous current-conducting grid. Measurements of the temperature and magnetic field dependences of the resistance and magnetic moment of the samples showed an increase in the critical parameters of the superconductivity state of nanostructured indium (critical temperature Tc ≤ 3.62 K and critical magnetic field Hc at T = 0 K Hc(0) ≤ 1700 Oe) with respect to the massive material (Tc = 3.41 K, Hc(0) = 280 Oe). In the dependence of the resistance on temperature and the magnetic field, a step transition to the superconductivity state associated with the nanocomposite structure was observed. A pronounced hysteresis M(H) is observed in the dependence of the magnetic moment M of the nanocomposite on the magnetic field at T < Tc, caused by the multiply connected structure of the current-conducting indium grid. The results obtained are interpreted taking into account the dimensional dependence of the superconducting characteristics of the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. V. Shamshur, A. V. Chernyaev, A. V. Fokin, and S. G. Romanov, Phys. Solid State 47, 2005 (2005).

    Article  ADS  Google Scholar 

  2. G. Zhavnerko and G. Marletta, Mater. Sci. Eng. B 169, 43 (2010).

    Article  Google Scholar 

  3. V. N. Bogomolov, V. V. Zhuravlev, A. I. Zadorozhnii, E. V. Kolla, and Yu. I. Kumzerov, JETP Lett. 36, 443 (1982).

    Google Scholar 

  4. S. Matsuo, H. Sugiura, and S. Noguchi, J. Low Temp. Phys. 15, 481 (1974).

    Article  ADS  Google Scholar 

  5. V. V. Shmidt, Introduction to Superconductor Physics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  6. R. V. Parfeniev, D. V. Shamshur, A. V. Chernyaev, A. V. Fokin, and S. G. Romanov, in Proceedings of the 9th International Symposium on Nanostructures: Physics and Technology, St. Petersburg, Russia, 2001, p.429.

  7. R. Lortz et al., Phys. Rev. B 75, 094503 (2007).

    Article  ADS  Google Scholar 

  8. R. V. Parfeniev, D. V. Shamshur, M. S. Kononchuk, A. V. Chernyaev, S. G. Romanov, and A. V. Fokin, in Proceedings of the 24 International Conference on Low Temperature Physics, Orlando, FL, 2005, p. 235.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Mikhailin.

Additional information

Original Russian Text © N.Yu. Mikhailin, S.G. Romanov, Yu.A. Kumzerov, A.V. Fokin, D.V. Shamshur, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 10, pp. 1900–1905.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailin, N.Y., Romanov, S.G., Kumzerov, Y.A. et al. Superconducting Properties of Indium Nanostructured in Pores of Thin Films of SiO2 Microspheres. Phys. Solid State 60, 1942–1947 (2018). https://doi.org/10.1134/S1063783418100207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418100207

Navigation