Mössbauer Studies and the Microwave Properties of Al3+- and In3+-Substituted Barium Hexaferrites

Abstract

The correlation of the chemical composition, the structure, and the microwave characteristic of solid solutions of the BaFe12 – xDxO19 (0.1 ≤ x ≤ 1.2) barium hexaferrite substituted with diamagnetic Al3+ and In3+ ions has been studied. The precise data on the crystal structure have been obtained by powder neutron diffraction using a high-resolution Fourier diffractometer (Dubna, JINR). The data on the distribution of the diamagnetic substituting ions in the hexaferrite structure have been obtained by Mössbauer spectroscopy. The microwave properties (the transmittance and the reflectance) have been studied in the frequency range 20–65 GHz and in external magnetic fields to 8 kOe. It is found that the transmission spectra are characterized by a peak that corresponds to the resonant frequency of the electromagnetic energy absorption, which is due to the ferromagnetic resonance phenomenon. The correlation of the chemical composition, the features of the ion distribution in the structure, and the electromagnetic properties has been revealed. It is shown that external magnetic fields shift the absorption peak of electromagnetic radiation to higher frequencies due to an increase in the magnetocrystal anisotropy. The results enable the conclusion that the features of the intrasublattice interactions and the electromagnetic properties should be explained using the phenomenological Goodenough–Kanamori model.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. Adelskold, Avk. Miner. A 1, 12 (1938).

    Google Scholar 

  2. 2.

    S. V. Trukhanov, A. V. Trukhanov, V. G. Kostishyn, and L. V. Panina, Dalton Trans. 46, 9010 (2017).

    Article  Google Scholar 

  3. 3.

    O. P. Aleshko-Ozhevskii, R. A. Sizov, I. I. Yamzin, and V. A. Lubimtsev, Sov. Phys. JETP 28, 425 (1969).

    ADS  Google Scholar 

  4. 4.

    L. Wang, H. Yu, X. Ren, and G. Xu, J. Alloys Compd. 588, 212 (2014).

    Article  Google Scholar 

  5. 5.

    P. Meng, K. Xiong, L. Wang, S. Li, Y. Cheng, and G. Xu, J. Alloys Compd. 628, 75 (2015).

    Article  Google Scholar 

  6. 6.

    V. A. Turchenko, A. V. Trukhanov, I. A. Bobrikov, S. V. Trukhanov, and A. M. Balagurov, Crystallogr. Rep. 60, 629 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    A. V. Trukhanov, L. V. Panina, S. V. Trukhanov, V. A. Turchenko, and M. Salem, Chin. Phys., B 25, 016102 (2016).

    Article  Google Scholar 

  8. 8.

    D. A. Vinnik, D. A. Zherebtsov, L. S. Mashkovtseva, S. Nemrava, M. Bischoff, N. S. Perov, A. S. Semisalova, I. V. Krivtsov, L. I. Isaenko, G. G. Mikhailov, and R. Niewa, J. Alloys Compd. 615, 1043 (2014).

    Article  Google Scholar 

  9. 9.

    A. M. Y. El-Lawindy, S. A. Mansour, M. Hafiz, H. H. Hassan, and A. A. Ali, Int. J. Appl. Ceram. Technol. 7, 868 (2010).

    Article  Google Scholar 

  10. 10.

    X. Liu, J. Wang, L. M. Gan, S. C. Ng, and J. Ding, J. Magn. Magn. Mater. 184, 344 (1998).

    ADS  Article  Google Scholar 

  11. 11.

    E. Richter, T. J. E. Miller, T. W. Neumann, and T. L. Hudson, IEEE Trans. Ind. Appl. 1A-21, 644 (1985).

    Article  Google Scholar 

  12. 12.

    Q. A. Pankhurst and R. S. Pollard, J. Phys.: Condens. Mater. 5, 8487 (1993).

    ADS  Google Scholar 

  13. 13.

    Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett. 105, 257201 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    B. Warcholinski, A. Gilewicz, T. A. Kuznetsova, T. I. Zubar, S. A. Chizhik, S. O. Abetkovskaia, and V. A. Lapitskaya, Surf. Coat. Technol. 117, 319 (2017).

    Google Scholar 

  15. 15.

    E. V. Sadyrin, B. I. Mitrin, S. M. Aizikovich, and T. I. Zubar, Mater. Phys. Mech. 28, 1 (2016).

    Google Scholar 

  16. 16.

    G. Tan and X. Chen, J. Magn. Magn. Mater. 327, 87 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    A. V. Trukhanov, V. O. Turchenko, I. A. Bobrikov, S. V. Trukhanov, I. S. Kazakevich, and A. M. Balagurov, J. Magn. Magn. Mater. 253, 393 (2015).

    Google Scholar 

  18. 18.

    A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, V. G. Kostishyn, D. N. Chitanov, I. S. Kazakevich, An. V. Trukhanov, V. A. Turchenko, and M. Salem, Ceram. Int. 43, 5635 (2017).

    Article  Google Scholar 

  19. 19.

    S. V. Trukhanov, A. V. Trukhanov, V. G. Kostishin, L. V. Panina, I. S. Kazakevich, V. A. Turchenko, and V. V. Kochervinskiy, JETP Lett. 103, 100 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    A. V. Trukhanov, S. V. Trukhanov, V. G. Kostishin, L. V. Panina, M. M. Salem, I. S. Kazakevich, V. A. Turchenko, V. V. Kochervinskii, and D. A. Krivchenya, Phys. Solid State 59, 737 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    L. Li, K. Chen, H. Liu, G. Tong, H. Qian, and B. Hao, J. Alloys Compd. 11, 557 (2013).

    Google Scholar 

  22. 22.

    N. Velhal, G. Kulkarni, D. Mahadik, P. Chowdhury, H. Barshilia, and V. Puri, J. Alloys Compd. 682, 730 (2016).

    Article  Google Scholar 

  23. 23.

    L. I. Krenev, E. V. Sadyrin, S. M. Aizikovich, and T. I. Zubar, Springer Proc. Phys. 193, 184 (2017).

    Google Scholar 

  24. 24.

    B. Warcholinski, A. Gilewicz, O. Lupicka, A. S. Kuprin, G. N. Tolmachova, V. D. Ovcharenko, I. V. Kolodiy, M. Sawczak, A. E. Kochmanska, P. Kochmanski, T. A. Kuznetsova, T. I. Zubar, A. L. Khudoley, and S. A. Chizhik, Surf. Coat. Technol. 920, 309 (2016).

    Google Scholar 

  25. 25.

    F. A. Miranda, F. W. van Keuls, and R. R. Romanofsky, IEEE Trans. Microwave Theory Technol. 48, 1181 (2000).

    ADS  Article  Google Scholar 

  26. 26.

    J.-S. Kim, Y.-H. Lee, B. Lee, J.-C. Lee, J. J. Choi, and J. Y. Kim, J. Electr. Eng. Technol. 9, 273 (2014).

    Article  Google Scholar 

  27. 27.

    L. Vovchenko, L. Matzui, O. Brusylovets, V. Oliynyk, V. Launets, A. Shames, O. Yakovenko, and N. Skoryk, Mat.-wiss. Werkstofftech. 47, 139 (2016).

    Article  Google Scholar 

  28. 28.

    D. Chen, Y. Liu, Y. Li, K. Yang, and H. Zhang, J. Magn. Magn. Mater. 37–38, 65 (2013).

    Article  Google Scholar 

  29. 29.

    T. Kuznetsova, T. Zubar, S. Chizhik, A. Gilewicz, O. Lupicka, and B. Warcholinski, J. Mater. Eng. Perform. 25, 5450 (2016).

    Article  Google Scholar 

  30. 30.

    V. Zavaleyev, J. Walkowicz, T. Kuznetsova, and T. Zubar, Thin Solid Films 153, 638 (2017).

    Google Scholar 

  31. 31.

    D. A. Vinnik, A. B. Ustinov, D. A. Zherebtsov, V. V. Vitko, S. A. Gudkova, I. Zakharchuk, E. Lähderanta, and R. Niewa, Ceram. Int. 41, 12728 (2015).

    Article  Google Scholar 

  32. 32.

    S. V. Trukhanov, A. V. Trukhanov, V. O. Turchenko, V. G. Kostishin, L. V. Panina, I. S. Kazakevich, and A. M. Balagurov, J. Magn. Magn. Mater. 417, 130 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    S. V. Trukhanov, A. V. Trukhanov, V. G. Kostishyn, L. V. Panina, An. V. Trukhanov, V. A. Turchenko, D. I. Tishkevich, E. L. Trukhanova, V. V. Oleynik, O. S. Yakovenko, L. Yu. Matzui, and D. A. Vinnik, J. Magn. Magn. Mater. 442, 300 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    T. A. Kuznetsova, T. I. Zubar, V. A. Lapitskaya, K. A. Sudzilouskaya, S. A. Chizhik, A. L. Didenko, V. M. Svetlichnyi, M. E. Vylegzhanina, V. V. Kudryavtsev, and T. E. Sukhanova, IOP Conf. Ser. Mater. Sci. Eng. 256, 1 (2017).

    Article  Google Scholar 

  35. 35.

    S. Kuprin, T. A. Kuznetsova, A. Gilewicz, G. N. Tolmachova, V. D. Ovcharenko, S. O. Abetkovskaia, T. I. Zubar, A. L. Khudoley, S. A. Chizhik, O. Lupicka, and B. Warcholinski, Probl. At. Sci. Technol. 6106, 147 (2016).

    Google Scholar 

  36. 36.

    A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, V. G. Kostishyn, I. S. Kazakevich, An. V. Trukhanov, E. L. Trukhanova, V. O. Natarov, V. A. Turchenko, M. M. Salem, and A. M. Balagurov, J. Magn. Magn. Mater. 426, 487 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    S. V. Trukhanov, A. V. Trukhanov, V. A. Turchenko, An. V. Trukhanov, E. L. Trukhanova, D. I. Tishkevich, V. M. Ivanov, T. I. Zubar, M. Salem, V. G. Kostishyn, L. V. Panina, D. A. Vinnik, and S. A. Gudkova, Ceram. Int. 44, 290 (2018).

    Article  Google Scholar 

  38. 38.

    H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  39. 39.

    https://doi.org/www.ill.eu/sites/fullprof/.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Trukhanov.

Additional information

Original Russian Text © A.V. Trukhanov, V.G. Kostishin, V.V. Korovushkin, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, I.S. Polyakov, R.Kh. Rakhmatullin, G.A. Filatov, T.I. Zubar’, V.V. Oleinik, E.S. Yakovenko, L.Yu. Matsui, L.L. Vovchenko, V.L. Launets, E.L. Trukhanova, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 9, pp. 1723–1732.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trukhanov, A.V., Kostishin, V.G., Korovushkin, V.V. et al. Mössbauer Studies and the Microwave Properties of Al3+- and In3+-Substituted Barium Hexaferrites. Phys. Solid State 60, 1768–1777 (2018). https://doi.org/10.1134/S1063783418090342

Download citation