Skip to main content
Log in

Influence of Size Effects on the Electronic Structure of Hexagonal Gallium Telluride

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using methods of the density functional theory, the electronic band structure of a hexagonal modification of the layered GaTe semiconductor has been calculated. The structural parameters of a bulk crystal with the β-polytype symmetry have been determined taking into account van der Waals interactions and agree with experimental data for polycrystalline films within 2%. Estimates for the position of extrema of the upper valence band and the lower conduction band have been obtained with respect to the vacuum level for bulk β-GaTe and for ultrathin plates with the number of elementary layers ranging from 1 to 10, which corresponds to a thickness range of 0.5–8 nm. The calculations demonstrate that hexagonal GaTe is an indirect band gap semiconductor with a forbidden band width varying from 0.8 eV in the bulk material to 2.3 eV in the monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Sánchez-Royo, A. Segura, and V. Muñoz, Phys. Status Solidi A 151, 257 (1995).

    Article  ADS  Google Scholar 

  2. B. G. Tagiev and O. B. Tagiev, Phys. Solid State 59, 1080 (2017).

    Article  ADS  Google Scholar 

  3. V. N. Brudnyi, S. Yu. Sarkisov, and A. V. Kosobutsky, Semicond. Sci. Technol. 30, 115019 (2015).

    Article  ADS  Google Scholar 

  4. A. V. Kosobutsky, S. Yu. Sarkisov, and V. N. Brudnyi, J. Phys. Chem. Solids 74, 1240 (2013).

    Article  ADS  Google Scholar 

  5. P. Hu, J. Zhang, M. Yoon, X.-F. Qiao, X. Zhang, W. Feng, P. Tan, W. Zheng, J. Liu, X. Wang, J. C. Idrobo, D. B. Geohegan, and K. Xiao, Nano Res. 7, 694 (2014).

    Article  Google Scholar 

  6. F. Wang, Z. Wang, K. Xu, F. Wang, Q. Wang, Y. Huang, L. Yin, and J. He, Nano Lett. 15, 7558 (2015).

    Article  ADS  Google Scholar 

  7. I. V. Antonova, Semiconductors 50, 66 (2016).

    Article  ADS  Google Scholar 

  8. S. A. Semiletov and V. A. Vlasov, Sov. Phys. Crystallogr. 8, 704 (1964).

    Google Scholar 

  9. E. G. Gillan and A. R. Barron, Chem. Mater. 9, 3037 (1997).

    Article  Google Scholar 

  10. N. N. Kolesnikov, E. B. Borisenko, D. N. Borisenko, and A. V. Timonina, J. Cryst. Growth 365, 59 (2013).

    Article  ADS  Google Scholar 

  11. Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, B. Chen, S. Xi, L. Xu, H. Zhen, Z. Yin, J. Li, J. Rena, and W. Jie, Phys. Chem. Chem. Phys. 18, 18719 (2016).

    Article  Google Scholar 

  12. C. J. Bae, J. McMahon, H. Detz, G. Strasser, J. Park, E. Einarsson, and D. B. Eason, AIP Adv. 7, 035113 (2017).

    Article  ADS  Google Scholar 

  13. H. L. Zhuang and R. G. Hennig, Chem. Mater. 25, 3232 (2013).

    Article  Google Scholar 

  14. S. Y. Sarkisov, A. V. Kosobutsky, and S. D. Shandakov, J. Solid State Chem. 232, 67 (2015).

    Article  ADS  Google Scholar 

  15. S. Yu. Sarkisov, A. V. Kosobutsky, V. N. Brudnyi, and Yu. N. Zhuravlev, Phys. Solid State 57, 1735 (2015).

    Article  ADS  Google Scholar 

  16. P. Giannozzi, S. Baroni, and N. Bonini, J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  17. D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zólyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patané, L. Eaves, I. V. Grigorieva, et al., Nat. Nanotechnol. 12, 223 (2017).

    Article  ADS  Google Scholar 

  18. D. V. Rybkovskiy, A. V. Osadchy, and E. D. Obraztsova, Phys. Rev. B 90, 235302 (2014).

    Article  ADS  Google Scholar 

  19. J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).

    Article  ADS  Google Scholar 

  20. Z. A. Jahangirli, F. M. Gashimzade, D. A. Guseinova, B. G. Mekhtiev, and N. B. Mustafaev, Phys. Solid State 58, 1764 (2016).

    Article  ADS  Google Scholar 

  21. J. A. Olmos-Asar, C. R. Leão, and A. Fazzio, RSC Adv. 7, 32383 (2017).

    Article  Google Scholar 

  22. J. J. Fonseca Vega, PhD Thesis (Univ. of California, Berkeley, 2017), p.53.

  23. A. V. Kosobutsky and A. B. Gordienko, Phys. Solid State 57, 1972 (2015).

    Article  ADS  Google Scholar 

  24. A. V. Kosobutsky and Yu. M. Basalaev, Solid State Commun. 199, 17 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kosobutsky.

Additional information

Original Russian Text © A.V. Kosobutsky, S.Yu. Sarkisov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 9, pp. 1645–1649.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosobutsky, A.V., Sarkisov, S.Y. Influence of Size Effects on the Electronic Structure of Hexagonal Gallium Telluride. Phys. Solid State 60, 1686–1690 (2018). https://doi.org/10.1134/S1063783418090172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418090172

Navigation