Physics of the Solid State

, Volume 60, Issue 9, pp 1897–1902 | Cite as

Origination and Transformation of the Monoclinic and Orthorhombic Phases in Reactor Powders of Ultrahigh Molecular Weight Polyethylene

  • M. V. Baidakova
  • P. V. Dorovatovskii
  • Ya. V. Zubavichus
  • E. M. Ivan’kova
  • S. S. Ivanchev
  • V. A. Marikhin
  • L. P. MyasnikovaEmail author
  • M. A. Yagovkina


Using powerful synchrotron X-ray radiation of the beamline “Belok” operated by the National Research Center “Kurchatov Institute,” we perform X-ray diffraction (XRD) study of an intact, virgin (not subjected to any external mechanical loads) particle isolated from reactor powder of ultrahigh molecular weight polyethylene. Along with the peaks originating from the orthorhombic phase, we detect the peaks characteristic of the monoclinic phase that is stable only under mechanical stress, suggesting that the mechanical stress that leads to the formation of the monoclinic phase and persists at room temperature develops during the polymer synthesis. The monoclinic phase gradually disappears when the particle is heated stepwise in increments of 5 K, and its peaks become undetectable when the temperature reaches 340 K. We contrast the results obtained for the phase composition of the virgin particle to those for a tablet prepared by compaction of the same reactor powder at room temperature. XRD analyses of the tablet were performed on D2 Phaser (Bruker) instrument. The monoclinic phase that originates during the polymer synthesis and the one that forms in the tablet during compaction have different parameters. We discuss the mechanisms by which these two different monoclinic phases originate during the processes involved.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Smith, H. D. Chanzy, and B. P. Rotzinger, Polym. Commun. 26, 258 (1985).CrossRefGoogle Scholar
  2. 2.
    P. Smith, H. D. Chanzy, and B. P. Rotzinger, J. Mater. Sci. 22, 523 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    Yong Lak Joo, Huajun Zhou, Seung-Goo Lee, Hwan-Koo Lee, and Jae Kyung Song, J. Appl. Polym. Sci. 98, 718 (2005).CrossRefGoogle Scholar
  4. 4.
    G. Forte, S. Rastogi, S. Ronca, and H. J. Tjaden, The Netherlands Patent WO 2012072780 A1 (2012).Google Scholar
  5. 5.
    L. P. Myasnikova, Yu. M. Boiko, E. M. Ivan’kova, V. A. Marikhin, O. Yu. Solov’eva, E. I. Radovanova, and A. A. Kalachev, in Reactor Powder Morphology, Ed. by P. Lemstra and L. Myasnikova (Nova Science, USA, 2011), Chap.5.Google Scholar
  6. 6.
    G. F. Morin, G. Delmas, and D. F. R. Gilson, Macromolecules 28, 3248 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    B. P. Rotzinger, H. D. Chanzy, and P. Smith, Polymer 30, 1814 (1989).CrossRefGoogle Scholar
  8. 8.
    Y. M. T. Tervoort-Engelen and P. J. Lemstra, Polym. Commun. 32, 343 (1991).CrossRefGoogle Scholar
  9. 9.
    X.-Y. Wang and R. Salovey, J. Appl. Polym. Sci. 34, 593 (1987).CrossRefGoogle Scholar
  10. 10.
    V. V. Aulov, M. A. Shcherbina, S. N. Chvalun, S. V. Makarov, I. O. Kuchkina, A. A. Pantyukhin, N. F. Bakeev, and Yu. S. Pavlov, Polymer Sci., Ser. A 46, 620 (2004).Google Scholar
  11. 11.
    Y. L. Joo, O. H. Han, H.-K. Lee, and J. K. Song, Polymer 41, 1355 (2000).CrossRefGoogle Scholar
  12. 12.
    A. N. Ozerin, S. S. Ivanchev, S. N. Chvalun, V. A. Aulov, N. I. Ivancheva, and N. F. Bakeev, Polymer Sci., Ser. A 54, 950 (2012).CrossRefGoogle Scholar
  13. 13.
    R. W. Cheary and A. A. Coelho, J. Appl. Crystallogr. 25, 109 (1992).CrossRefGoogle Scholar
  14. 14.
    A. A. Coelho, J. Appl. Crystallogr. 36, 86 (2003).CrossRefGoogle Scholar
  15. 15.
    A. LeBail, Powder Diffract. 20, 316 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    G. S. Pawley, J. Appl. Crystallogr. 14, 357 (1981).CrossRefGoogle Scholar
  17. 17.
    T. Yemny and R. L. McCullough, J. Polym. Sci., Polym. Phys. Ed. 11, 1385 (1973).ADSGoogle Scholar
  18. 18.
    B. B. Straumal, in Proceedings of the 13th Petersburg Readings, 2002, p.23.Google Scholar
  19. 19.
    L. P. Myansikova, Yu. M. Boiko, E. M. Ivan’kova, V. A. Marikhin, O. Yu. Solov’eva, E. I. Radovanova, and A. A. Kalachev, Adv. Mater. Sci. Res. 20, 1 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Baidakova
    • 1
  • P. V. Dorovatovskii
    • 2
  • Ya. V. Zubavichus
    • 2
  • E. M. Ivan’kova
    • 3
  • S. S. Ivanchev
    • 3
  • V. A. Marikhin
    • 1
  • L. P. Myasnikova
    • 1
    Email author
  • M. A. Yagovkina
    • 1
  1. 1.Ioffe InstituteSaint PetersburgRussia
  2. 2.National Research Center “Kurchatov Institute,”MoscowRussia
  3. 3.Institute of Macromolecular CompoundsSt. PetersburgRussia

Personalised recommendations