Skip to main content
Log in

Origination and Transformation of the Monoclinic and Orthorhombic Phases in Reactor Powders of Ultrahigh Molecular Weight Polyethylene

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using powerful synchrotron X-ray radiation of the beamline “Belok” operated by the National Research Center “Kurchatov Institute,” we perform X-ray diffraction (XRD) study of an intact, virgin (not subjected to any external mechanical loads) particle isolated from reactor powder of ultrahigh molecular weight polyethylene. Along with the peaks originating from the orthorhombic phase, we detect the peaks characteristic of the monoclinic phase that is stable only under mechanical stress, suggesting that the mechanical stress that leads to the formation of the monoclinic phase and persists at room temperature develops during the polymer synthesis. The monoclinic phase gradually disappears when the particle is heated stepwise in increments of 5 K, and its peaks become undetectable when the temperature reaches 340 K. We contrast the results obtained for the phase composition of the virgin particle to those for a tablet prepared by compaction of the same reactor powder at room temperature. XRD analyses of the tablet were performed on D2 Phaser (Bruker) instrument. The monoclinic phase that originates during the polymer synthesis and the one that forms in the tablet during compaction have different parameters. We discuss the mechanisms by which these two different monoclinic phases originate during the processes involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Smith, H. D. Chanzy, and B. P. Rotzinger, Polym. Commun. 26, 258 (1985).

    Article  Google Scholar 

  2. P. Smith, H. D. Chanzy, and B. P. Rotzinger, J. Mater. Sci. 22, 523 (1987).

    Article  ADS  Google Scholar 

  3. Yong Lak Joo, Huajun Zhou, Seung-Goo Lee, Hwan-Koo Lee, and Jae Kyung Song, J. Appl. Polym. Sci. 98, 718 (2005).

    Article  Google Scholar 

  4. G. Forte, S. Rastogi, S. Ronca, and H. J. Tjaden, The Netherlands Patent WO 2012072780 A1 (2012).

  5. L. P. Myasnikova, Yu. M. Boiko, E. M. Ivan’kova, V. A. Marikhin, O. Yu. Solov’eva, E. I. Radovanova, and A. A. Kalachev, in Reactor Powder Morphology, Ed. by P. Lemstra and L. Myasnikova (Nova Science, USA, 2011), Chap.5.

  6. G. F. Morin, G. Delmas, and D. F. R. Gilson, Macromolecules 28, 3248 (1995).

    Article  ADS  Google Scholar 

  7. B. P. Rotzinger, H. D. Chanzy, and P. Smith, Polymer 30, 1814 (1989).

    Article  Google Scholar 

  8. Y. M. T. Tervoort-Engelen and P. J. Lemstra, Polym. Commun. 32, 343 (1991).

    Article  Google Scholar 

  9. X.-Y. Wang and R. Salovey, J. Appl. Polym. Sci. 34, 593 (1987).

    Article  Google Scholar 

  10. V. V. Aulov, M. A. Shcherbina, S. N. Chvalun, S. V. Makarov, I. O. Kuchkina, A. A. Pantyukhin, N. F. Bakeev, and Yu. S. Pavlov, Polymer Sci., Ser. A 46, 620 (2004).

    Google Scholar 

  11. Y. L. Joo, O. H. Han, H.-K. Lee, and J. K. Song, Polymer 41, 1355 (2000).

    Article  Google Scholar 

  12. A. N. Ozerin, S. S. Ivanchev, S. N. Chvalun, V. A. Aulov, N. I. Ivancheva, and N. F. Bakeev, Polymer Sci., Ser. A 54, 950 (2012).

    Article  Google Scholar 

  13. R. W. Cheary and A. A. Coelho, J. Appl. Crystallogr. 25, 109 (1992).

    Article  Google Scholar 

  14. A. A. Coelho, J. Appl. Crystallogr. 36, 86 (2003).

    Article  Google Scholar 

  15. A. LeBail, Powder Diffract. 20, 316 (2005).

    Article  ADS  Google Scholar 

  16. G. S. Pawley, J. Appl. Crystallogr. 14, 357 (1981).

    Article  Google Scholar 

  17. T. Yemny and R. L. McCullough, J. Polym. Sci., Polym. Phys. Ed. 11, 1385 (1973).

    ADS  Google Scholar 

  18. B. B. Straumal, in Proceedings of the 13th Petersburg Readings, 2002, p.23.

    Google Scholar 

  19. L. P. Myansikova, Yu. M. Boiko, E. M. Ivan’kova, V. A. Marikhin, O. Yu. Solov’eva, E. I. Radovanova, and A. A. Kalachev, Adv. Mater. Sci. Res. 20, 1 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Myasnikova.

Additional information

Original Russian Text © M.V. Baidakova, P.V. Dorovatovskii, Ya.V. Zubavichus, E.M. Ivan’kova, S.S. Ivanchev, V.A. Marikhin, L.P. Myasnikova, M.A. Yagovkina, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 9, pp. 1847–1851.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidakova, M.V., Dorovatovskii, P.V., Zubavichus, Y.V. et al. Origination and Transformation of the Monoclinic and Orthorhombic Phases in Reactor Powders of Ultrahigh Molecular Weight Polyethylene. Phys. Solid State 60, 1897–1902 (2018). https://doi.org/10.1134/S1063783418090044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418090044

Navigation