Critical Dependence of the Excitonic Absorption in Cuprous Oxide on Experimental Parameters

Abstract

We study the modification of the exciton absorption in cuprous oxide by the presence of free carriers excited through above band gap excitation. Without this pumping, the absorption spectrum below the band gap consists of the yellow exciton series with principal quantum numbers up to more than n = 20, depending on the temperature, changing over to an about constant, only slowly varying absorption above the gap. Careful injection of free carriers, starting from densities well below 1 μm–3, leads to a reduction of the band gap through correlation effects. The excitons in the Rydberg regime above n = 10 remain unaffected until the band gap approaches them. Then they lose oscillator strength and ultimately vanish upon crossing with the band gap.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. F. Klingshirn, Semiconductor Optics (Springer, Berlin, 2012).

    Google Scholar 

  2. 2.

    N. F. Mott, Rev. Mod. Phys. 40, 677 (1968); G. B. Norris and K. K. Bajaj, Phys. Rev. B 26, 6706 (1982).

    ADS  Article  Google Scholar 

  3. 3.

    M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, Phys. Rev. B 29, 2028 (1984); J. Collet, J. Phys. Chem. Solids 46, 417 (1985).

    ADS  Article  Google Scholar 

  4. 4.

    D. Semkat, F. Richter, D. Kremp, G. Manzke, W.-D. Kraeft, and K. Henneberger, Phys. Rev. B 80, 155201 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    J. Brandt, D. Fröhlich, C. Sandfort, M. Bayer, H. Stolz, and N. Naka, Phys. Rev. Lett. 99, 217403 (2007).

    ADS  Article  Google Scholar 

  6. 6.

    E. F. Gross and N. A. Karrjew, Dokl. Akad. Nauk SSSR 84, 471 (1952).

    Google Scholar 

  7. 7.

    E. F. Gross, Nuovo Cimento 4, 672 (1956).

    Article  Google Scholar 

  8. 8.

    F. Schöne, S.-O. Krüger, P. Grünwald, H. Stolz, S. Scheel, M. Aßmann, J. Heckötter, J. Thewes, D. Fröhlich, and M. Bayer, Phys. Rev. B 93, 075203 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    M. Aßmann, J. Thewes, D. Fröhlich, and M. Bayer, Nat. Mater. 15, 741 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Ch. Uihlein, D. Fröhlich, and R. Kenklies, Phys. Rev. B 23, 2731 (1981).

    ADS  Article  Google Scholar 

  11. 11.

    R. J. Elliott, Phys. Rev. 108, 1384 (1957).

    ADS  Article  Google Scholar 

  12. 12.

    T. Itoh and S. Narita, J. Phys. Soc. Jpn. 39, 140 (1975).

    ADS  Article  Google Scholar 

  13. 13.

    S. John, C. Soukoulis, M. H. Cohen, and E. N. Economou, Phys. Rev. Lett. 57, 1777 (1986).

    ADS  Article  Google Scholar 

  14. 14.

    J. Heckötter, M. Freitag, D. Fröhlich, M. Aßmann, M. Bayer, P. Grünwald, F. Schöne, D. Semkat, H. Stolz, and S. Scheel, arXiv:1709.00891 [condmat. mtrl-sci].

  15. 15.

    H. Haug and S. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (Word Scientific, Singapore, 1993).

    Google Scholar 

  16. 16.

    R. Zimmermann, Phys. Status Solidi B 146, 371 (1988); G. Manzke, D. Semkat, F. Richter, D. Kremp, and K. Henneberger, J. Phys.: Conf. Ser. 210, 012020 (2010); R. Zimmermann, K. Kilimann, W. D. Kraeft, D. Kremp, and G. Röpke, Phys. Status Solidi B 90, 175 (1978); G. Manzke, D. Semkat, and H. Stolz, New J. Phys. 14, 095002 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    H. Stolz, R. Schwartz, F. Kieseling, S. Som, M. Kaupsch, S. Sobkowiak, D. Semkat, N. Naka, Th. Koch, and H. Fehske, New J. Phys. 14, 105007 (2012); R. Schwartz, N. Naka, F. Kieseling, and H. Stolz, New J. Phys. 14, 023054 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    D. Kremp, M. Schlanges, and W.-D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Bayer.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heckötter, J., Freitag, M., Aßmann, M. et al. Critical Dependence of the Excitonic Absorption in Cuprous Oxide on Experimental Parameters. Phys. Solid State 60, 1618–1624 (2018). https://doi.org/10.1134/S1063783418080097

Download citation