Skip to main content
Log in

High-Speed Composite Microactuator Based on Ti2NiCu Alloy with Shape Memory Effect

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Samples of microactuators are made of a bimorph composite of Ti2NiCu alloy with a thermoelastic martensitic transition and the shape memory effect, and their response rate is investigated. The active layer of the composite actuator is a layer of the rapidly quenched Ti2NiCu alloy, pseudoplastically prestretched, and an amorphous layer of the same alloy is used as an elastic layer. Typical sizes of the microactuator are 30 × 2 × 2 μm. The controlled amplitude of the displacement of the microactuator tip is approximately 1 μm. The response rate of the microactuator was investigated by scanning electron microscopy. Activation of the microactuator was achieved by heating when electric pulses were passed through it. Full activation of the microactuator at frequencies up to 1 kHz was demonstrated; partial activation was observed at frequencies up to 8 kHz. The possibility of operating the device in a self-oscillating mode at frequencies of the order of 100 kHz is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H. J. Maier, and Y. I. Chumlyakov, Acta Mater. 49, 747 (2001).

    Article  Google Scholar 

  2. J. Shaw and S. Kyriakides, J. Mech. Phys. Solids 43, 1243 (1995).

    Article  ADS  Google Scholar 

  3. A. D. Bozhko, V. D. Buchel’nikov, A. N. Vasil’ev, I. E. Dikshtein, S. M. Seletskii, V. V. Khavailo, and V. G. Shavrov, JETP Lett. 67, 227 (1998).

    Article  ADS  Google Scholar 

  4. V. Buchelnikov, I. Dikshtein, R. Grechishkin, T. Khudoverdyan, V. Koledov, Y. Kuzavko, I. Nazarkin, V. Shavrov, and T. Takagi, J. Magn. Magn. Mater. 272–276, 2025 (2004).

    Article  Google Scholar 

  5. N. I. Kourov, A. V. Korolev, V. G. Pushin, V. V. Koledov, V. G. Shavrov, and V. V. Khovailo, Phys. Met. Metallogr. 99, 376 (2005).

    Google Scholar 

  6. V. G. Pushin, N. I. Kourov, A. V. Korolev, V. A. Kazantsev, L. I. Yurchenko, V. V. Koledov, V. G. Shavrov, and V. V. Khovailo, Phys. Met. Metallogr. 99, 401 (2005).

    Google Scholar 

  7. S. Saadat, J. Salichs, and M. Noori, Smart Mater. Struct. 11, 218 (2002).

    Article  ADS  Google Scholar 

  8. D. Wever, A. Veldhuizen, J. de Vries, H. J. Busscher, D. R. A. Uges, and J. R. van Horn, Biomaterials 19, 761 (1998).

    Article  Google Scholar 

  9. L. Ponsonnet, D. Treheux, and M. Lissac, Int. J. Appl. Electromagn. Mech. 23, 147 (2006).

    Google Scholar 

  10. K. Otsuka and X. Ren, Prog. Mater. Sci. 50, 511 (2005).

    Article  Google Scholar 

  11. J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, Mater. Des. 56, 1078 (2014).

    Article  Google Scholar 

  12. Shape Memory Alloys: Fundamentals, Modeling and Industrial Applications, Ed. by A. V. Shelyakov, N. M. Matveeva, S. G. Larin, F. Trochu, V. Brailovski, and A. Galibois (Canad. Inst. Mining, Metall. Pet., Quebec City, Canada, 1999), p. 295

  13. P. L. Potapov, S. E. Kulkova, A. V. Shelyakov, K. Okutsu, S. Miyazaki, and D. Schryvers, J. Phys. IV 112, 727 (2003).

    Google Scholar 

  14. P. Lega, V. Koledov, A. Orlov, D. Kuchin, A. Frolov, V. Shavrov, A. Martynova, A. Irzhak, A. Shelyakov, V. Sampath, V. Khovaylo, and P. Ari-Gur, Adv. Eng. Mater. 19, 1700154 (2017).

    Article  Google Scholar 

  15. A. M. Zhikharev, A. V. Irzhak, M. Y. Beresin, P. V. Lega, V. V. Koledov, N. N. Kasyanov, and G. S. Martynov, J. Phys.: Conf. Ser. 741, 012206 (2016).

    Google Scholar 

  16. A. V. Irzhak, P. V. Lega, A. M. Zhikharev, V. V. Koledov, A. P. Orlov, D. S. Kuchin, N. Y. Tabachkova, V. A. Dikan, A. V. Shelyakov, M. Y. Beresin, V. G. Pushin, S. V. von Gratowski, V. Y. Pokrovskiy, S. G. Zybtsev, and V. G. Shavrov, Dokl. Phys. 62, 5 (2017).

    Article  ADS  Google Scholar 

  17. S. H. Song, J-Y. Lee, H. Rodrigue, I-S. Choi, Y. J. Kang, and S. H. Ahn, Sci. Rep. 6, 21118 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Lega.

Additional information

Original Russian Text © D.S. Kuchin, P.V. Lega, A.P. Orlov, A.V. Frolov, A.V. Irzhak, A.M. Zhikharev, A.P. Kamantsev, V.V. Koledov, A.V. Shelyakov, V.G. Shavrov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 6, pp. 1152–1156.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchin, D.S., Lega, P.V., Orlov, A.P. et al. High-Speed Composite Microactuator Based on Ti2NiCu Alloy with Shape Memory Effect. Phys. Solid State 60, 1163–1167 (2018). https://doi.org/10.1134/S1063783418060173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418060173

Navigation