Skip to main content
Log in

Properties of Moving Discrete Breathers in Beryllium

  • Lattice Dynamics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Discrete breathers (DBs) have been described among pure metals with face-centered cubic (FCC) and body-centered cubic (BCC) lattice, but for hexagonal close-packed (HCP) metals, their properties are little studied. In this paper, the properties of standing and moving DBs in beryllium HCP metal are analyzed by the molecular dynamics method using the many-body interatomic potential. It is shown that the DB is localized in a close-packed atomic row in the basal plane, while oscillations with a large amplitude along the close-packed row are made by two or three atoms, moving in antiphase with the nearest neighbors. Dependences of the DB frequency on the amplitude, as well as the velocity of the DB on its amplitude and on parameter δ, which determines the phase difference of the oscillations of neighboring atoms, are obtained. The maximum velocity of the DB movement in beryllium reaches 4.35 km/s, which is 33.7% of the velocity of longitudinal sound waves. The obtained results supplement our concepts about the mechanisms of localization and energy transport in HCP metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970 (1988).

    Article  ADS  Google Scholar 

  2. B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, Phys. Rev. Lett. 82, 3288 (1999).

    Article  ADS  Google Scholar 

  3. N. K. Voulgarakis, G. Kalosakas, A. R. Bishop, and G. P. Tsironis, Phys. Rev. B 64, 020301 (2001).

    Article  ADS  Google Scholar 

  4. G. Kalosakas, A. R. Bishop, and A. P. Shreve, Phys. Rev. B 66, 094303 (2002).

    Article  ADS  Google Scholar 

  5. D. K. Campbell, S. Flach, and Y. S. Kivshar, Phys. Today 57, 43 (2004).

    Article  ADS  Google Scholar 

  6. M. E. Manley, A. Alatas, F. Trouw, B. M. Leu, J. W. Lynn, Y. Chen, and W. L. Hults, Phys. Rev. B 77, 214305 (2008).

    Article  ADS  Google Scholar 

  7. M. E. Manley, M. Yethiraj, H. Sinn, H. M. Volz, A. Alatas, J. C. Lashley, W. L. Hults, G. H. Lander, and J. L. Smith, Phys. Rev. Lett. 96, 125501 (2006).

    Article  ADS  Google Scholar 

  8. M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet, and A. Alatas, Phys. Rev. B 79, 134304 (2009).

    Article  ADS  Google Scholar 

  9. M. Kempa, P. Ondrejkovic, P. Bourges, J. Ollivier, S. Rols, J. Kulda, S. Margueron, and J. Hlinka, J. Phys.: Condens. Matter 25, 055403 (2013).

    ADS  Google Scholar 

  10. A. J. Sievers, M. Sato, J. B. Page, and T. Rossler, Phys. Rev. B 88, 104305 (2013).

    Article  ADS  Google Scholar 

  11. G. M. Chechin, G. S. Dzhelauhova, and E. A. Mehonoshina, Phys. Rev. E 74, 036608 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Flach and A. Gorbach, Phys. Rep. 467, 1 (2008).

    Article  ADS  Google Scholar 

  13. S. V. Dmitriev, Pis’ma Mater. 1 (2), 78 (2011).

    Google Scholar 

  14. S. V. Dmitriev, E. A. Korznikova, Yu. A. Baimova, and M. G. Velarde, Phys. Usp. 59, 446 (2016).

    Article  ADS  Google Scholar 

  15. S. A. Kiselev and A. J. Sievers, Phys. Rev. B 55, 5755 (1997).

    Article  ADS  Google Scholar 

  16. L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B 81, 214306 (2010).

    Article  ADS  Google Scholar 

  17. A. A. Kistanov and S. V. Dmitriev, Phys. Solid State 54, 1648 (2012).

    Article  ADS  Google Scholar 

  18. A. A. Kistanov and S. V. Dmitriev, Tech. Phys. Lett. 39, 618 (2013).

    Article  ADS  Google Scholar 

  19. A. A. Kistanov, Yu. A. Baimova, and S. V. Dmitriev, Tech. Phys. Lett. 38, 676 (2012).

    Article  ADS  Google Scholar 

  20. Yu. A. Baimova, S. V. Dmitriev, A. A. Kistanov, and A. I. Potekaev, Russ. Phys. J. 56, 180 (2013).

    Article  Google Scholar 

  21. S. V. Dmitriev and Yu. A. Baimova, Tech. Phys. Lett. 37, 451 (2011).

    Article  ADS  Google Scholar 

  22. N. K. Voulgarakis, G. Hadjisavvas, P. C. Kelires, and G. P. Tsironis, Phys. Rev. B 69, 113201 (2004).

    Article  ADS  Google Scholar 

  23. M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, and A. J. Sievers, Phys. Rev. B 84, 144303 (2011).

    Article  ADS  Google Scholar 

  24. A. V. Savin and Yu. S. Kivshar, Phys. Rev. B 85, 125427 (2012).

    Article  ADS  Google Scholar 

  25. T. Shimada, D. Shirasaki, and T. Kitamura, Phys. Rev. B 81, 035401 (2010).

    Article  ADS  Google Scholar 

  26. J. A. Baimova, S. V. Dmitriev, and K. Zhou, Europhys. Lett. 100, 36005 (2012).

    Article  ADS  Google Scholar 

  27. L. Z. Khadeeva, S. V. Dmitriev, and Yu. S. Kivshar, JETP Lett. 94, 539 (2011).

    Article  ADS  Google Scholar 

  28. E. A. Korznikova, J. A. Baimova, and S. V. Dmitriev, Europhys. Lett. 102, 60004 (2013).

    Article  ADS  Google Scholar 

  29. E. A. Korznikova, A. V. Savin, Yu. A. Baimova, S. V. Dmitriev, and R. R Mulyukov, JETP Lett. 96, 222 (2012).

    Article  ADS  Google Scholar 

  30. L. Z. Khadeeva, C. B. Dmitriev, and Yu. S. Kivshar’, JETP Lett. 94, 539 (2011).

    Article  ADS  Google Scholar 

  31. P. V. Zakharov, M. D. Starostenkov, N. N. Medvedev, A. M. Eremin, and A. V. Markidonov, Fundam. Probl. Sovrev. Materialoved. 11, 388 (2014).

    Google Scholar 

  32. P. V. Zakharov, M. D. Starostenkov, A. M. Eremin, E. A. Korznikova, and S. V. Dmitriev, Fundam. Probl. Sovrev. Materialoved. 11, 260 (2014).

    Google Scholar 

  33. M. D. Starostenkov, P. V. Zakharov, and N. N. Medvedev, Fundam. Probl. Sovrev. Materialoved. 8 (4), 40 (2011).

    Google Scholar 

  34. N. N. Medvedev, M. D. Starostenkov, P. V. Zakharov, and O. V. Pozhidaeva, Tech. Phys. Lett. 37, 98 (2011).

    Article  ADS  Google Scholar 

  35. N. N. Medvedev, M. D. Starostenkov, P. V. Zakharov, and A. V. Markidonov, Pis’ma Mater. 3, 34 (2013).

    Google Scholar 

  36. N. N. Medvedev and M. D. Starostenkov, Izv. Vyssh. Uchebn. Zaved., Fiz. 55 (11/3), 113 (2012).

    Google Scholar 

  37. A. A. Kistanov, A. S. Semenov, R. T. Murzaev, and S. V. Dmitriev, Fundam. Probl. Sovrev. Materialoved. 11, 322 (2014).

    Google Scholar 

  38. A. A. Kistanov, R. T. Murzaev, S. V. Dmitriev, V. I. Dubinko, and V. V. Khizhnyakov, JETP Lett. 99, 353 (2014).

    Article  ADS  Google Scholar 

  39. A. A. Kistanov, S. V. Dmitriev, A. P. Chetverikov, and M. G. Velarde, Eur. Phys. J. B 87, 211 (2014).

    Article  ADS  Google Scholar 

  40. A. A. Kistanov, S. V. Dmitriev, A. S. Semenov, V. I. Dubinko, and D. A. Terent’ev, Tech. Phys. Lett. 40, 657 (2014).

    Article  ADS  Google Scholar 

  41. A. A. Kistanov, A. S. Semenov, and S. V. Dmitriev, J. Exp. Theor. Phys. 119, 766 (2014).

    Article  ADS  Google Scholar 

  42. A. A. Kistanov, Fundam. Probl. Sovrev. Materialoved. 11, 9 (2014).

    Google Scholar 

  43. A. A. Kistanov, A. S. Semenov, and S. V. Dmitriev, Fundam. Probl. Sovrev. Materialoved. 11, 223 (2014).

    Google Scholar 

  44. N. N. Medvedev, S. V. Dmitriev, and M. D. Starostenkov, Fundam. Probl. Sovrev. Materialoved. 4 (3), 100 (2007).

    Google Scholar 

  45. L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B 84, 144304 (2011).

    Article  ADS  Google Scholar 

  46. S. V. Dmitriev, L. Z. Khadeeva, A. I. Pshenichnyuk, and N. N. Medvedev, Phys. Solid State 52, 1499 (2010).

    Article  ADS  Google Scholar 

  47. O. V. Pozhidaeva, S. V. Dmitriev, N. N. Medvedev, Yu. V. Bebikhov, A. V. Samsonov, and M. D. Starostenkov, Fundam. Probl. Sovrev. Materialoved. 4 (4), 102 (2007).

    Google Scholar 

  48. S. V. Dmitriev and L. Z. Khadeeva, Phys. Solid State 53, 1425 (2011).

    Article  ADS  Google Scholar 

  49. S. V. Dmitriev, N. N. Medvedev, R. R. Mulyukov, O. V. Pozhidaeva, A. I. Potekaev, and M. D. Starostenkov, Russ. Phys. J. 51, 858 (2008).

    Article  Google Scholar 

  50. B. Liu, J. A. Baimova, S. V. Dmitriev, X. Wang, H. Zhu, and K. Zhou, J. Phys. D 46, 305302 (2013).

    Article  Google Scholar 

  51. I. P. Lobzenko, G. M. Chechin, G. S. Bezuglova, Y. A. Baimova, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 58, 633 (2016).

    Article  ADS  Google Scholar 

  52. G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, and D. S. Ryabov, Phys. Rev. B 90, 045432 (2014).

    Article  ADS  Google Scholar 

  53. L. G. Golubchikov and D. K. Kurbatov, Vopr. At. Nauki Tekh., No. 4, 80 (2004).

    Google Scholar 

  54. B. N. Kolbasov, A. A. Borisov, N. N. Vasil’ev, V. M. Leonov, G. E. Shatalov, V. A. Belyakov, and Yu. S. Strebkov, Vopr. At. Nauki Tekh., No. 4, 3 (2007).

    Google Scholar 

  55. A. S. Semenov, R. T. Murzaev, A. A. Kistanov, and Yu. V. Bebikhov, Fundam. Probl. Sovrev. Materialoved. 12 (1), 26 (2015).

    Google Scholar 

  56. http://lammps.sandia.gov/.

  57. A. Agrawal, R. Mishra, L. Ward, K. M. Flores, and W. Wind, Mod. Simul. Mater. Sci. 21, 8 (2013).

    Google Scholar 

  58. A. Agrawal, R. Mishra, L. Ward, K. M. Flores, and W. Wind, Mod. Simul. Mater. Sci. 23, 3 (2015).

    Google Scholar 

  59. K. J. H. Mackay and N. A. Hill, J. Nucl. Mater. 8, 263 (1963).

    Article  ADS  Google Scholar 

  60. A. A. Kistanov, A. S. Semenov, R. T. Murzaev, and S. V. Dmitriev, Fundam. Probl. Sovrev. Materialoved. 11, 322 (2014).

    Google Scholar 

  61. A. A. Kistanov, A. S. Semenov, R. T. Murzaev, and S. V. Dmitriev, Fundam. Probl. Sovrev. Materialoved. 11, 572 (2014).

    Google Scholar 

  62. R. T. Murzaev, E. A. Korznikova, D. I. Bokii, S. Yu. Fomin, and S. V. Dmitriev, Fundam. Probl. Sovrev. Materialoved. 12, 324 (2015).

    Google Scholar 

  63. A. S. Semenov, R. T. Murzaev, A. A. Kistanov, and Yu. V. Bebikhov, Fundam. Probl. Sovrev. Materialoved. 12, 26 (2015).

    Google Scholar 

  64. R. T. Murzaev, A. A. Kistanov, V. I. Dubinko, D. A. Terentyev, and S. V. Dmitriev, Comp. Mater. Sci. 98, 88 (2015).

    Article  Google Scholar 

  65. R. T. Murzaev, R. I. Babicheva, K. Zhou, E. A. Korznikova, S. Y. Fomin, V. I. Dubinko, and S. V. Dmitriev, Eur. Phys. J. B 89, 168 (2016).

    Article  ADS  Google Scholar 

  66. R. T. Murzaev, A. A. Kistanov, V. I. Dubinko, D. A. Terentyev, and S. V. Dmitriev, Comp. Mater. Sci. 98, 88 (2015).

    Article  Google Scholar 

  67. N. K. Voulgarakis, G. Hadjisavvas, P. C. Kelires, and G. P. Tsironis, Phys. Rev. B 69, 113201 (2004).

    Article  ADS  Google Scholar 

  68. R. T. Murzaev, D. V. Bachurin, E. A. Korznikova, and S. V. Dmitriev, Phys. Lett. A 381, 1003 (2017).

    Article  ADS  Google Scholar 

  69. S. V. Dmitriev, N. N. Medvedev, A. P. Chetverikov, K. Zhou, and M. G. Velarde, Phys. Status Solidi RRL 11, 1700298 (2017).

    Article  Google Scholar 

  70. A. P. Chetverikov, I. A. Shepelev, E. A. Korznikova, A. A. Kistanov, S. V. Dmitriev, and M. G. Velarde, Comp. Condens. Matter 13, 59 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Bachurina.

Additional information

Original Russian Text © O.V. Bachurina, R.T. Murzaev, A.S. Semenov, E.A. Korznikova, S.V. Dmitriev, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 5, pp. 978–983.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachurina, O.V., Murzaev, R.T., Semenov, A.S. et al. Properties of Moving Discrete Breathers in Beryllium. Phys. Solid State 60, 989–994 (2018). https://doi.org/10.1134/S1063783418050049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418050049

Navigation