Skip to main content
Log in

Crystal-Physical Model of Ion Transport in Nonlinear Optical Crystals of KTiOPO4

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The ionic conductivity along the principal axes a, b, and c of the unit cell of the nonlinear-optical high-resistance KTiOPO4 single crystals (rhombic syngony, space group Pna21), which are as-grown and after thermal annealing in vacuum, has been investigated by the method of impedance spectroscopy. The crystals were grown from a solution-melt by the Czochralski method. The as-grown KTiOPO4 crystals possess a quasi-one-dimensional conductivity along the crystallographic c axis, which is caused by the migration of K+ cations: σc = 1.0 × 10–5 S/cm at 573 K. Wherein the characteristics of the anisotropy of ionic conductivity of the crystals is equal to σca= 3 and σcb= 24. The thermal annealing at 1000 K for 10 h in vacuum increases the magnitude of σc of KTiOPO4 by a factor of 28 and leads to an increase in the ratio σcb= 2.1 × 103 at 573 K. A crystal-physical model of ionic transport in KTiOPO4 crystals has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Kalesinkas, N. I. Pavlova, I. S. Rez, and J. P. Grigas, Lit. Fiz. Sb. 22, 87 (1982).

    Google Scholar 

  2. V. K. Yanovskii and V. I. Voronkova, Sov. Phys. Solid State 27, 1308 (1985).

    Google Scholar 

  3. J. D. Bierlein and C. B. Arweiler, Appl. Phys. Lett. 49, 917 (1986).

    Article  ADS  Google Scholar 

  4. I. M. Sil’vestrova, V. A. Maslov, and Yu. V. Pisarevskii, Sov. Phys. Crystallogr. 37, 660 (1992).

    Google Scholar 

  5. S. Sigaryov, J. Phys. D 26, 1326 (1993).

    Article  ADS  Google Scholar 

  6. A. Pimenov, C. H. Ruscher, and V. A. Maslov, Solid State Commun. 97, 913 (1996).

    Article  ADS  Google Scholar 

  7. K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, J. Mater. Sci. Lett. 19, 69 (2000).

    Article  Google Scholar 

  8. P. Urenski, N. Gorbatov, and G. Rosenman, J. Appl. Phys. 89, 1850 (2001).

    Article  ADS  Google Scholar 

  9. J. H. Park, C. S. Kim, B. C. Choi, B. K. Moon, and H. J. Seo, Appl. Phys. A 78, 745 (2004).

    Article  ADS  Google Scholar 

  10. V. G. Gurtovoi, A. U. Sheleg, S. A. Guretskii, and N. A. Kalanda, Crystallogr. Rep. 53, 683 (2008).

    Article  ADS  Google Scholar 

  11. www.raicol.com.

  12. N. Angert, L. Kaplun, M. Tseitlin, M. Yashchin, and M. Roth, J. Cryst. Growth 137, 116 (1994).

    Article  ADS  Google Scholar 

  13. F. G. Zumsteg, Lazer Focus 14, 18 (1978).

    Google Scholar 

  14. A. L. Aleksandrovskii, S. A. Akhmanov, V. A. D’yakov, N. I. Zheludev, and V. I. Pryalkin, Sov. J. Quantum Electron. 15, 885 (1985).

    Article  ADS  Google Scholar 

  15. V. A. Rusov, V. A. Serebryakov, A. B. Kaplun, and A. V. Gorchakov, J. Opt. Technol. 76, 325 (2009).

    Article  Google Scholar 

  16. N. E. Novikova, I. A. Verin, N. I. Sorokina, O. A. Alekseeva, V. I. Voronkova, M. Tseitlin, and M. Roth, Crystallogr. Rep. 53, 942 (2008).

    Article  ADS  Google Scholar 

  17. Yu. V. Shaldin, S. Matyjasik, M. Tseitlin, and M. Roth, Phys. Solid State 50, 1315 (2008).

    Article  ADS  Google Scholar 

  18. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Sov. Phys. Solid State 25, 1007 (1983).

    Google Scholar 

  19. N. Angert, M. Tseitlin, E. Yashin, and M. Roth, Appl. Phys. Lett. 67, 1941 (1995).

    Article  ADS  Google Scholar 

  20. N. I. Sorokina and V. I. Voronkova, Crystallogr. Rep. 52, 80 (2007).

    Article  ADS  Google Scholar 

  21. I. Tordjman, R. Masse, and C. Guitel, Z. Kristal. 139, 103 (1974).

    Article  Google Scholar 

  22. S. Norberg and N. Ishizawa, Acta Crystallogr. C 61, 99 (2005).

    Article  Google Scholar 

  23. M. Yashima and T. Komatsu, Chem. Commun., 1070 (2009).

    Google Scholar 

  24. E. L. Belokoneva and B. V. Mill’, Zh. Neorg. Khim. 39, 355 (1994).

    Google Scholar 

  25. N. I. Sorokin, N. E. Novikova, Yu. V. Shaldin, and M. Tseitlin, Crystallogr. Rep. 63, 207 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Additional information

Original Russian Text © N.I. Sorokin, Yu.V. Shaldin, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 4, pp. 706–709.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, N.I., Shaldin, Y.V. Crystal-Physical Model of Ion Transport in Nonlinear Optical Crystals of KTiOPO4. Phys. Solid State 60, 710–713 (2018). https://doi.org/10.1134/S1063783418040315

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418040315

Navigation