Skip to main content
Log in

Two Stages of Impact Fracture of Polycrystalline ZnS and ZnSe Compounds

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Mechanoluminescence (ML) in ductile solids is caused by the motion of charged dislocations in the deformable material. Interatomic bond ruptures followed by electronic structure reconfiguration are the main source of ML in brittle bodies. We studied ML in ceramics composed of mixed ionic/covalent ZnS and ZnSe compounds, which are generated during impact loading higher than the limit deformation. Depending on synthesis method and thermal treatment, the resulting ceramics had different size and geometry of grains and intergrain boundary structure, which presumably may have a significant effect on the dislocation glide. In both materials, the time sweeps of ML pulses have two well-resolved peaks. The position of the peaks along the time axis is substantially dependent on the size of ceramic-forming grains and, to a smaller extent, on the barrier properties of intergrain boundaries. The first peak is associated with plastic deformation preceding disintegration of the crystal structure. The second peak emerges upon crack nucleation as interatomic bonds are ruptured and the material is undergoing local deformation in tips of propagating cracks. The distributions of ML pulse amplitudes (the dependences between the number of pulses and their amplitude) calculated for both peaks individually follow the power law, which demonstrates that the electronic processes having different excitation mechanisms (dislocation motion vs bond rupture) are correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kawaguchi, Solid State Commun. 117, 17 (2001).

    Article  ADS  Google Scholar 

  2. N. Brahme, M. Shukla, D. P. Bisen, U. Kurrey, A. Choubey, R. S. Kher, and M. Singh, J. Lumin. 131, 965 (2011).

    Article  Google Scholar 

  3. N. C. Eddingsaas and K. S. Suslick, Nature 444, 163 (2006).

    Article  ADS  Google Scholar 

  4. G. Pallares, C. L. Rountree, L. Douillard, F. Charra, and E. Bouchaud, Europhys. Lett. 99, 28003 (2012).

    Article  ADS  Google Scholar 

  5. S. I. Bredikhin and S. Z. Shmurak, Sov. Phys. JETP 49, 520 (1979).

    ADS  Google Scholar 

  6. B. P. Chandra, in Luminescence of Solids, Ed. by D. R. Vij (Plenum, New York, 1998), p.361.

  7. A. Chmel and I. Shcherbakov, J. Non-Cryst. Solids 369, 34 (2013).

    Article  ADS  Google Scholar 

  8. I. P. Shcherbakov, A. A. Dunaev, A. G. Kadomtsev, and A. E. Chmel’, Phys. Solid State 58, 2040 (2016).

    Article  ADS  Google Scholar 

  9. A. G. Kadomtsev, A. E. Chmel’, and I. P. Shcherbakov, Fiz. Mezomekh. 19, 74 (2016).

    Google Scholar 

  10. G. H. Jilbert and J. E. Field, Wear 243, 6 (2000).

    Article  Google Scholar 

  11. C. S. Chang, J. L. He, and Z. P. Lin, Wear 255, 115 (2003).

    Article  Google Scholar 

  12. S. I. Bredikhin and S. Z. Shmurak, Sov. Phys. JETP 46, 768 (1977).

    ADS  Google Scholar 

  13. N. Yu. Makarova, A. G. Spazhakin, P. P. Kornilov, Yu. S. Klimenko, and R. A. Skornyakov, in Proceedings of the All-Russia Conference on Actual Problems of Aviation and Astronautics, Krasnoyarsk, 2005, p.67.

  14. Z. T. Rakhmanov, T. Yu. Makarova, A. G. Spazhakin, and K. V. Tatmyshevskii, RF Patent No. 2305847 (2007).

  15. A. F. Shchurov, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Yashina, A. N. Sysoev, and D. N. Shevarenkov, Inorg. Mater. 40, 336 (2004).

    Article  Google Scholar 

  16. J. Pelleg, Mechanical Properties of Materials (Springer, Dordreht, 2013), Chap. 3, p.188.

    Book  Google Scholar 

  17. G. A. Malygin, Phys. Usp. 42, 887 (1999).

    Article  ADS  Google Scholar 

  18. A. Chmel and I. Shcherbakov, Fract. Struct. Integr. 30, 162 (2014).

    Google Scholar 

  19. G. A. Malygin, Phys. Solid State 57, 967 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Chmel’.

Additional information

Original Russian Text © I.P. Shcherbakov, A.A. Dunaev, A.E. Chmel’, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 4, pp. 760–764.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, I.P., Dunaev, A.A. & Chmel’, A.E. Two Stages of Impact Fracture of Polycrystalline ZnS and ZnSe Compounds. Phys. Solid State 60, 764–768 (2018). https://doi.org/10.1134/S1063783418040303

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418040303

Navigation