Skip to main content
Log in

Transmission Spectra of HgTe-Based Quantum Wells and Films in the Far-Infrared Range

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Strained 80-nm-thick HgTe films belong to a new class of materials referred to as three-dimensional topological insulators (i.e., they have a bulk band gap and spin-nondegenerate surface states). Though there are a number of studies devoted to analysis of the properties of surface states using both transport and magnetooptical techniques in the THz range, the information about direct optical transitions between bulk and surface bands in these systems has not been reported. This study is devoted to the analysis of transmission and reflection spectra of HgTe films of different thicknesses in the far-infrared range recorded in a wide temperature range in order to detect the above interband transitions. A peculiarity at 15 meV, which is sensitive to a change in the temperature, is observed in spectra of both types. Detailed analysis of the data obtained revealed that this feature is related to absorption by HgTe optical phonons, while the interband optical transitions are suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. D’yakonov and A. V. Khaetskii, JETP Lett. 33, 110 (1981).

    ADS  Google Scholar 

  2. L. G. Gerchikov and A. V. Subashiev, Phys. Status Solidi 160, 443 (1990).

    Article  Google Scholar 

  3. B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).

    ADS  Google Scholar 

  4. B. A. Bernevig, T. L. Hughes, and S. Zhang, Science 314, 1757 (2006).

    Article  ADS  Google Scholar 

  5. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007).

    Article  ADS  Google Scholar 

  6. C. Brune, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Phys. Rev. Lett. 106, 126803 (2011).

    Article  ADS  Google Scholar 

  7. D. A. Kozlov, Z. D. Kvon, E. B. Olshanetsky, N. N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Phys. Rev. Lett. 112, 196801 (2014).

    Article  ADS  Google Scholar 

  8. D. A. Kozlov, D. Bauer, J. Ziegler, R. Fischer, M. L. Savchenko, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Phys. Rev. Lett. 116, 166802 (2016).

    Article  ADS  Google Scholar 

  9. H. Maier, J. Ziegler, R. Fischer, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky. and D. Weiss, arXiv: 1708.07766 (2017).

  10. J. Wiedenmann, E. Bocquillon, R. S. Deacon, S. Hartinger, O. Herrmann, T. M. Klapwijk, L. Maier, C. Ames, C. Brune, C. Gould, A. Oiwa, K. Ishibashi, S. Tarucha, H. Buhmann, and L. W. Molenkamp, Nat. Commun. 7, 10303 (2016).

    Article  ADS  Google Scholar 

  11. K. M. Dantscher, D. A. Kozlov, P. Olbrich, C. Zoth, P. Faltermeier, M. Lindner, G. V. Budkin, S. A. Tarasenko, V. V. Belkov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, D. Weiss, B. Jenichen, and S. D. Ganichev, Phys. Rev. B 92, 165314 (2015).

    Article  ADS  Google Scholar 

  12. A. V. Ikonnikov, M. S. Zholudev, K. E. Spirin, A. A. Lastovkin, K. V. Maremyanin, V. Ya. Aleshkin, V. I. Gavrilenko, O. Drachenko, M. Helm, J. Wosnitza, M. Goiran, N. N. Mikhailov, S. A. Dvoretskii, F. Teppe, N. Diakonova, C. Consejo, B. Chenaud, and W. Knap, Semicond. Sci. Technol. 26, 125011 (2011).

    Article  ADS  Google Scholar 

  13. A. M. Kadykov, F. Teppe, C. Consejo, L. Viti, M. S. Vitiello, S. S. Krishtopenko, S. Ruffenach, S. V. Morozov, M. Marcinkiewicz, W. Desrat, N. Dyakonova, W. Knap, V. I. Gavrilenko, N. N. Mikhailov, and S. A. Dvoretsky, Appl. Phys. Lett. 107, 152101 (2015).

    Article  ADS  Google Scholar 

  14. M. Marcinkiewicz, S. Ruffenach, S. S. Krishtopenko, A. M. Kadykov, C. Consejo, D. B. But, W. Desrat, W. Knap, J. Torres, A. V. Ikonnikov, K. E. Spirin, S. V. Morozov, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretskii, and F. Teppe, Phys. Rev. B 96, 035405 (2017).

    Article  ADS  Google Scholar 

  15. Z. D. Kvon, E. B. Olshanetsky, N. N. Mikhailov, and D. A. Kozlov, J. Low Temp. Phys. 35, 6 (2009).

    Article  Google Scholar 

  16. M. Grynberg, R. le Toullec, and M. Balkanski, Phys. Rev. B 9, 517 (1974).

    Article  ADS  Google Scholar 

  17. H. Kepa and T. Giebultowicz, Phys. Scr. 25, 807 (1982).

    Article  ADS  Google Scholar 

  18. Z. D. Kvon, E. B. Olshanetsky, D. A. Kozlov, N. N. Mikhailov, and S. A. Dvoretskii, JETP Lett. 87, 502 (2008).

    Article  ADS  Google Scholar 

  19. Z. D. Kvon, E. B. Olshanetsky, D. A. Kozlov, E. G. Novik, N. N. Mikhailov, and S. A. Dvoretsky, J. Low Temp. Phys. 37, 202 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Savchenko.

Additional information

Original Russian Text © M.L. Savchenko, N.N. Vasil’ev, A.S. Yaroshevich, D.A. Kozlov, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretskii, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 4, pp. 774–778.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchenko, M.L., Vasil’ev, N.N., Yaroshevich, A.S. et al. Transmission Spectra of HgTe-Based Quantum Wells and Films in the Far-Infrared Range. Phys. Solid State 60, 778–782 (2018). https://doi.org/10.1134/S1063783418040285

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418040285

Navigation