Skip to main content
Log in

Effect of Hydrogen Adsorption on the Stone–Wales Transformation in Small-Diameter Carbon Nanotubes

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of hydrogenation of (4, 0) and (3, 0) carbon nanotubes on the Stone–Wales transformation is studied in the framework of the nonorthogonal tight-binding model. It is shown that the atomic hydrogen adsorption can lead to both a decrease and an increase in the barriers for the direct and inverse transformations depending on the orientation of a rotating C–C bond with respect to the nanotube axis. The characteristic times of formation and annealing the Stone–Wales defects have been estimated. The Young’s moduli have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London, U.K.) 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  4. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  5. B. R. Eggen, M. I. Heggie, G. Jungnickel, C. D. Latham, R. Jones, and P. R. Briddon, Science 272, 87 (1996).

    Article  ADS  Google Scholar 

  6. Q. Lu and B. Bhattacharya, Nanotechnology 16, 555 (2005).

    Article  ADS  Google Scholar 

  7. L. Pan, Z. Shen, Y. Jia, and X. Dai, Phys. B (Amsterdam, Neth.) 407, 2763 (2012).

    Article  ADS  Google Scholar 

  8. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. 106, 1105 (2006).

    Article  Google Scholar 

  9. C. Wang, G. Zhou, H. Liu, and W. Duan, J. Phys. Chem. B 110, 10266 (2006).

    Article  Google Scholar 

  10. R. Ansari, S. Ajori, and B. Motevalli, Superlatt. Microstruct. 51, 274 (2012).

    Article  ADS  Google Scholar 

  11. S. N. Shirodkar and U. V. Waghmare, Phys. Rev. B 86, 165401 (2012).

    Article  ADS  Google Scholar 

  12. S. S. Moliver, R. R. Zimagullov, and A. L. Semenov, Tech. Phys. Lett. 37, 678 (2011).

    Article  Google Scholar 

  13. A. I. Podlivaev and L. A. Openov, Phys. Solid State 60 (2018, in press).

  14. J.-Y. Yi and J. Bernholc, Chem. Phys. Lett. 403, 359 (2005).

    Article  ADS  Google Scholar 

  15. A. J. M. Nascimento and R. W. Nunes, Nanotechnology 24, 435707 (2013).

    Article  ADS  Google Scholar 

  16. A. I. Podlivaev and L. A. Openov, Phys. Solid State 57, 2562 (2015).

    Article  ADS  Google Scholar 

  17. D. Stojkovic, P. Zhang, and V. H. Crespi, Phys. Rev. Lett. 87, 125502 (2001).

    Article  ADS  Google Scholar 

  18. M. Kabir and K. J. van Vliet, J. Phys. Chem. C 120, 1989 (2016).

    Article  Google Scholar 

  19. G. V. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

  20. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  21. L. A. Openov and A. I. Podlivaev, Phys. Solid State 50, 1195 (2008).

    Article  ADS  Google Scholar 

  22. K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Phys. E (Amsterdam, Neth.) 81, 1 (2016).

    Article  Google Scholar 

  23. L. A. Openov and A. I. Podlivaev, JETP Lett. 104, 193 (2016).

    Article  ADS  Google Scholar 

  24. M. M. Maslov and K. P. Katin, Chem. Phys. Lett. 644, 280 (2016).

    Article  ADS  Google Scholar 

  25. L. G. Zhou and S.-Q. Shi, Appl. Phys. Lett. 83, 1222 (2003).

    Article  ADS  Google Scholar 

  26. L.-M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu, and D. G. Pettifor, Phys. Rev. Lett. 85, 3249 (2000).

    Article  ADS  Google Scholar 

  27. T. C. Fitzgibbons, M. Guthrie, E. Xu, V. H. Crespi, S. K. Davidowski, G. D. Cody, N. Alem, and J. V. Badding, Nat. Mater. 14, 43 (2015).

    Article  ADS  Google Scholar 

  28. R. E. Roman, K. Kwan, and S. W. Cranford, Nano Lett. 15, 1585 (2015).

    Article  ADS  Google Scholar 

  29. C. D. Reddy, S. Rajendran, and K. M. Liew, Nanotechnology 17, 864 (2006).

    Article  ADS  Google Scholar 

  30. E. Hernández, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).

    Article  ADS  Google Scholar 

  31. O. E. Glukhova and O. A. Terent’ev, Phys. Solid State 48, 1411 (2006).

    Article  ADS  Google Scholar 

  32. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature (London, U.K.) 381, 678 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Openov.

Additional information

Original Russian Text © L.A. Openov, A.I. Podlivaev, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 4, pp. 795–798.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Openov, L.A., Podlivaev, A.I. Effect of Hydrogen Adsorption on the Stone–Wales Transformation in Small-Diameter Carbon Nanotubes. Phys. Solid State 60, 799–803 (2018). https://doi.org/10.1134/S1063783418040224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418040224

Navigation