Skip to main content
Log in

Effect of Carbon on the Electrical Properties of Copper Oxide-Based Bulk Composites

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of carbon filler on the electrical resistance and the thermopower of copper oxide-based composites produced by ceramic technology by hot pressing has been studied. It is found that the dependences of the electrical resistivity on the filler concentration are characteristic by S-like curves that are typical of percolation systems; in this case, the resistivity decreases more substantially as the carbon content increases as compared to the decrease in thermopower value, which is accompanied by the existence of the maximum of the factor of thermoelectric power near the percolation threshold. The studies of the temperature dependences of the resistivity and the thermopower at low temperatures show that, in the range 240–300 K, the predominant mechanism of the electrotransfer of all the composites under study is the hopping mechanism. At temperatures lower than 240 K, the composites with a nanocrystalline CuO matrix have a hopping conductivity with a variable hopping distance over localized states of the matrix near the Fermi level, which is related to the conductivity over intergrain CuO boundaries. A schematic model of the band structure of nanocrystalline CuO with carbon filler is proposed on the base of the analysis of the found experimental regularities of the electrotransfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Riffat and X. Ma, Appl. Thermal Eng. 23, 913 (2003).

    Article  Google Scholar 

  2. J. P. Heremans, Acta Phys. Polon. A 108, 609 (2005).

    Article  Google Scholar 

  3. Y. Ezzahri, G. Zeng, K. Fukutani, Z. Bian, and A. A. Shakouri, J. Microelectron. 39, 981 (2008).

    Article  Google Scholar 

  4. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature (London, U.K.) 431, 597 (2001).

    Article  ADS  Google Scholar 

  5. R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, and N. El-Masry, J. Cryst. Growth 170, 721 (1997).

    Article  Google Scholar 

  6. R. Funahashi and I. Matsubara, Appl. Phys. Lett. 79, 362 (2001).

    Article  ADS  Google Scholar 

  7. L. P. Bulat and D. A. Pshenai-Severin, Phys. Solid State 52, 485 (2010).

    Article  ADS  Google Scholar 

  8. H. Lin, E. S. Bozin, S. 1. Billinge, L. E. Quarez, and M. G. Kanatzidis, Phys. Rev. B 72, 1 (2005).

    Google Scholar 

  9. T. Harman, P. Taylor, M. Walsh, and B. LaForge, Science 297, 2229 (2002).

    Article  ADS  Google Scholar 

  10. A. Tavkhelidze, Nanotechnology 20, 6 (2009).

    Article  Google Scholar 

  11. A. Boukai, Y. Bunimovich, J. Tahir-Kheli, J-K Yu, W. Goddard, and J. Heath, Nat. Lett. 451, 168 (2008).

    Article  ADS  Google Scholar 

  12. A. Hochbaum, R. Chen, R. Delgado, W. Liang, E. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nat. Lett. 451, 163 (2008).

    Article  ADS  Google Scholar 

  13. J. Keyani and A. M. Stacy, Appl. Phys. Lett. 89, 233106 (2006).

    Article  ADS  Google Scholar 

  14. A. V. Shevel’kov, Russ. Chem. Rev. 77, 1 (2008).

    Article  Google Scholar 

  15. S. V. Mishchenko and A. G. Tkachev, Carbon Nanomaterials. Production, Properties, Application (Mashinostroenie, Moscow, 2008) [in Russian].

    Google Scholar 

  16. Yu. V. Panin, Yu. P. Prilepo, V. A. Makagonov, and S. A. Soldatenko, Al’tern. Energet. Ekol., No. 7, 64 (2011).

    Google Scholar 

  17. Yu. Yu. Tarasevich, Percolation: The Theory, Applications, Algorithms (URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  18. S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Nonlinear Phenomena in Nano-and Microheterogeneous Systems (BINOM, Labor. Znanii, Moscow, 2012) [in Russian].

    Google Scholar 

  19. A. Combessis, L. Bayon, and L. Flandin, Appl. Phys. Lett. 102, 011907 (2013).

    Article  ADS  Google Scholar 

  20. B. S. Pozdnyakov and E. A. Koptelov, Thermoelectric Power Engineering (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  21. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1971; Mir, Moscow, 1974), Vol.1.

    Google Scholar 

  22. O. E. Parfenov and F. A. Shklyaruk, Semiconductors 41, 1021 (2007).

    Article  ADS  Google Scholar 

  23. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984).

    Book  Google Scholar 

  24. A. P. Young and C. M. Schwartz, J. Phys. Chem. Solids 30, 249 (1969).

    Article  ADS  Google Scholar 

  25. G. Bush, Usp. Fiz. Nauk 6, 258 (1952).

    Article  Google Scholar 

  26. E. Fortunato, V. Figueiredo, P. Barquinha, and E. Elamuruguetal, Appl. Phys. Lett. 96, 192102 (2010).

    Article  ADS  Google Scholar 

  27. F. Greuter and G. Blatter, Semicond. Sci. Technol. 5, 111 (1999).

    Article  ADS  Google Scholar 

  28. K. Ellmer and R. Mientus, Thin Solid Films 516, 4620 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Makagonov.

Additional information

Original Russian Text © Yu.E. Kalinin, M.A. Kashirin, V.A. Makagonov, S.Yu. Pankov, A.V. Sitnikov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 4, pp. 677–686.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, Y.E., Kashirin, M.A., Makagonov, V.A. et al. Effect of Carbon on the Electrical Properties of Copper Oxide-Based Bulk Composites. Phys. Solid State 60, 681–690 (2018). https://doi.org/10.1134/S1063783418040133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418040133

Navigation