Skip to main content
Log in

Electrical Conductivity and Barrier Properties of Lithium Niobate Thin Films

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thin-film structures made of LiNbO3 and obtained via laser ablation and magnetron sputtering are studied with volt-farad and volt-ampere characteristics. A potential barrier on the Si–LiNbO3 interface was found for both types of the films with the capacitance-voltage characteristics. The current-voltage characteristics showed that there are several conduction mechanisms in the structures studied. The Poole–Frenkel effect and the currents limited by a space charge mainly contribute to the electrical conductivity in the LiNbO3 film produced with the laser ablation method. The currents limited by a space charge contribute to the main mechanism in the film heterostructure obtained with the magnetron sputtering method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. S. Kuz’minov, Electrooptical and Nonlinear Optical Lithium Niobate Crystal (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  2. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate Defects, Photorefraction, the Vibrational Spectrum, Polaritons (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  3. Piezoelectric MEMS Resonators, Ed. by H. Bhugra and G. Piazza (Springer International, Switzerland, 2017).

  4. L. Cai, Y. Wang, and H. Hu, Opt. Lett. 40, 3013 (2015).

    Article  ADS  Google Scholar 

  5. L. Cai, S. Li, H. Han, and H. Hu, Opt. Express 23, 1240 (2015).

    Article  ADS  Google Scholar 

  6. R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. Kumar Karnal, and P. Kumar Gupta, Crystals 7, 23 (2017).

    Article  Google Scholar 

  7. D. A. Kiselev, R. N. Zhukov, A. S. Bykov, M. I. Voronova, K. D. Shcherbachev, M. D. Malinkovich, and Yu. N. Parkhomenko, Inorg. Mater. 50, 419 (2014).

    Article  Google Scholar 

  8. S. V. Evdokimov and A. V. Yatsenko, Phys. Solid State 48, 336 (2006).

    Article  ADS  Google Scholar 

  9. E. H. Rhoderick, Metal–Semiconductor Contacts (Clarendon, Oxford, 1978).

    Google Scholar 

  10. B. H. Park, S. J. Hyun, C. R. Moon, Byung-Doo Choe, J. Lee, C. Y. Kim, W. Jo, and T. W. Noh, J. Appl. Phys. 84, 4428 (1998).

    Article  ADS  Google Scholar 

  11. M. Maleto, E. Pevtsov, A. Sigov, and A. Svotina, Integr. Ferroelectr. 43, 65 (2002).

    Article  Google Scholar 

  12. K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969).

    Google Scholar 

  13. V. I. Fistul’, Introduction to Semiconductor Physics (Vysshaya Shkola, Moscow, 1984) [in Russian].

    Google Scholar 

  14. V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Gudkov.

Additional information

Original Russian Text © S.I. Gudkov, K.D. Baklanova, M.V. Kamenshchikov, A.V. Solnyshkin, A.N. Belov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 4, pp. 739–742.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudkov, S.I., Baklanova, K.D., Kamenshchikov, M.V. et al. Electrical Conductivity and Barrier Properties of Lithium Niobate Thin Films. Phys. Solid State 60, 743–746 (2018). https://doi.org/10.1134/S106378341804011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341804011X

Navigation