Skip to main content
Log in

Local Anodic Oxidation of Thin GeO Films and Formation of Nanostructures Based on Them

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The process of local anodic oxidation of thin GeO films has been studied using an atomic force microscope. The electron-probe microanalysis showed that oxidized areas of a GeO film were germanium dioxide. The effect of the voltage pulse duration applied to the probe–substrate system and the atmospheric humidity on the height of the oxide structures has been studied. The kinetics of the local anodic oxidation (LAO) in a semi-contact mode obeys the Cabrera–Mott model for large times. The initial growth rate of the oxide (R0) significantly increases and the time of starting the oxidation (t0) decreases as the atmospheric humidity increases by 20%, which is related to an increase in the concentration of oxygen-containing ions at the surface of the oxidized GeO film. It was shown that nanostructures in thin GeO layers can be formed by the LAO method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Garcia, A. W. Knoll, and E. Riedo, Nat. Nanotechnol. 9, 577 (2014).

    Article  ADS  Google Scholar 

  2. A. V. Startseva and A. I. Maksimov, Molod. Uchen. 9, 12 (2012).

    Google Scholar 

  3. R. Garcia and M. Calleja, Appl. Phys. Lett. 72, 2295 (1998).

    Article  ADS  Google Scholar 

  4. P. Avouris and T. Hertel, Appl. Phys. Lett. 71, 285 (1997).

    Article  ADS  Google Scholar 

  5. K. Matsumoto, Y. Gotoh, T. Maeda, J. A. Dagata, and J. S. Harris, Appl. Phys. Lett. 76, 239 (2000).

    Article  ADS  Google Scholar 

  6. D. V. Sheglov, A. V. Latyshev, and A. L. Aseev, Appl. Surf. Sci. 243, 138 (2005).

    Article  ADS  Google Scholar 

  7. C. Delacour, B. Pannetier, J. C. Villegier, and V. Bouchiat, Nano Lett. 12, 3501 (2012).

    Article  ADS  Google Scholar 

  8. F. S.-S. Chien, Y. C. Chou, T. T. Chen, W.-F. Hsieh, T.-S. Chao, and S. Gwo, J. Appl. Phys. 89, 2465 (2001).

    Article  ADS  Google Scholar 

  9. I. Fernandez-Cuesta, X. Borrisé, and F. Pérez-Murano, Nanotechnology 16, 2731 (2005).

    Article  ADS  Google Scholar 

  10. Laser Pulses—Theory, Technology, and Applications, Ed. by I. Peshko (InTech, Rijeka, Croatia, 2012), Chap. 13, p.383.

  11. Y. Kamata, Mater. Today 11, 30 (2008).

    Article  Google Scholar 

  12. N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12, 163 (1949).

    Article  ADS  Google Scholar 

  13. H.-F. Hsu and C.-W. Lee, Ultramicroscopy 108, 1076 (2008).

    Article  Google Scholar 

  14. O. A. Ageev, V. A. Smirnov, M. S. Solodovnik, A. V. Rukomoikin, and V. I. Avilov, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 2, 43 (2012).

    Google Scholar 

  15. P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 16, 2521 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Astankova.

Additional information

Original Russian Text © K.N. Astankova, A.S. Kozhukhov, I.A. Azarov, E.B. Gorokhov, D.V. Sheglov, A.V. Latyshev, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 4, pp. 696–700.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astankova, K.N., Kozhukhov, A.S., Azarov, I.A. et al. Local Anodic Oxidation of Thin GeO Films and Formation of Nanostructures Based on Them. Phys. Solid State 60, 700–704 (2018). https://doi.org/10.1134/S1063783418040030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418040030

Navigation