Skip to main content
Log in

Frozen Superparaelectric State of Local Polar Regions in GdMn2O5 and Gd0.8Ce0.2MnO5

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A comparative study of the dielectric properties and electric polarization of multiferroics GdMn2O5 and Gd0.8Ce0.2MnO5 has been carried out in the temperature range 5–330 K. The polarization properties in the ferroelectric state that forms due to a charge ordering and exchange striction have been studied at TTC = 30 K. The properties of the restricted polar phase separation domains formed in the crystals containing ions Mn3+ and Mn4+ have been studied, too. These domains exhibit the electric polarization in the temperature range from 5 K to some temperatures TfTC. Such a high-temperature polarization is due to the frozen superparaelectric state of the restricted polar domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guba, and S-W. Cheong, Nature (London, U.K.) 429, 392 (2004).

    Article  ADS  Google Scholar 

  2. Y. Noda, H. Kimura, M. Fukunaga, S. Kobayashi, I. Kagomiya, and K. Kohn, J. Phys.: Condens. Matter 20, 434206 (2008).

    ADS  Google Scholar 

  3. J. van den Brink and D. I. Khomskii, J. Phys.: Condens. Matter 20, 434217 (2008).

    Google Scholar 

  4. P. G. Radaelli and L. C. Chapon, J. Phys.: Condens. Matter 20, 434213 (2008).

    ADS  Google Scholar 

  5. P. G. de Gennes, Phys. Rev. 118, 141 (1960).

    Article  ADS  Google Scholar 

  6. L. P. Gor’kov, Phys. Usp. 41, 581 (1998).

    Article  Google Scholar 

  7. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii, S. G. Lushnikov, M. P. Scheglov, S. N. Gvasaliya, A. Savvinov, R. S. Katiyar, H. Kawaji, and T. Atake, Phys. Rev. B 80, 224401 (2009).

    Article  ADS  Google Scholar 

  8. V. A. Sanina, E. I. Golovenchits, B. Kh. Khannanov, M. P. Scheglov, and V. G. Zalesskii, JETP Lett. 100, 407 (2014).

    Article  ADS  Google Scholar 

  9. B. Kh. Khannanov, V. A. Sanina, E. I. Golovenchits, and M. P. Scheglov, JETP Lett. 103, 248 (2016).

    Article  ADS  Google Scholar 

  10. B. Kh. Khannanov, V. A. Sanina, E. I. Golovenchits, and M. P. Scheglov, J. Magn. Magn. Mater. 421, 326 (2017).

    Article  ADS  Google Scholar 

  11. V. Baledent, S. Chattopadhyay, P. Fertey, M. B. Lepetit, M. Greenblatt, B. Wanklyn, F. O. Saouma, J. I. Jang, and P. Foury-Leylekian, Phys. Rev. Lett. 114, 117601 (2015).

    Article  ADS  Google Scholar 

  12. M. Yu. Kagan and K. I. Kugel’, Phys. Usp. 44, 553 (2001).

    Article  ADS  Google Scholar 

  13. V. A. Sanina, E. I. Golovenchits, and V. G. Zalesskii, JETP Lett. 95, 386 (2012).

    Article  ADS  Google Scholar 

  14. V. A. Sanina, E. I. Golovenchits, and V. G. Zalesskii, J. Phys.: Condens. Matter 24, 346002 (2012).

    Google Scholar 

  15. B. Kh. Khannanov, V. A. Sanina, and E. I. Golovenchits, Phys. Solid State 59, 1952 (2017).

    Article  ADS  Google Scholar 

  16. M. D. Glinchuk, E. A. Eliseev, and A. N. Morozovska, Phys. Rev. B 78, 134107 (2008).

    Article  ADS  Google Scholar 

  17. N. Lee, C. Vecchini, Y. J. Choi, L. C. Chapon, A. Bombardi, P. G. Radaelli, and S. W. Cheong, Phys. Rev. Lett. 110, 137203 (2013).

    Article  ADS  Google Scholar 

  18. B. Kh. Khannanov, V. A. Sanina, and E. I. Golovenchits, J. Phys.: Conf. Ser. 572, 012046 (2014).

    Google Scholar 

  19. E. I. Golovenchits and V. A. Sanina, JETP Lett. 78, 88 (2003).

    Article  ADS  Google Scholar 

  20. E. Golovenchits and V. Sanina, J. Phys.: Condens. Matter 16, 4325 (2004).

    ADS  Google Scholar 

  21. V. A. Sanina, L. M. Sapozhnikova, E. I. Golovenchits, and N. V. Morozov, Sov. Phys. Solid State 30, 1736 (1988).

    Google Scholar 

  22. A. V. Babinskii, E. I. Golovenchits, N. V. Morozov, and L. M. Sapozhnikova, Sov. Phys. Solid State 34, 56 (1992).

    Google Scholar 

  23. J. F. Scott, L. Kammerdiner, L. M. Parris, S. Traynor, V. Ottenbacher, A. Shawabkeh, and W. F. Oliver, J. Appl. Phys. 64, 787 (1988).

    Article  ADS  Google Scholar 

  24. M. Fukunaga and Y. Noda, J. Phys. Soc. J. 77, 0647068 (2008).

    Google Scholar 

  25. S. M. Feng, Y. S. Chai, J. L. Zhu, N. Manivannan, Y. S. Oh, L. J. Wang, Y. S. Yang, C. Q. Jin, and Kee Hoon Kim, New J. Phys. 12, 073006 (2010).

    Article  ADS  Google Scholar 

  26. A. R. Long, Adv. Phys. 31, 587 (1982).

    Article  Google Scholar 

  27. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii, and M. P. Scheglov, J. Phys.: Condens. Matter 23, 456003 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sanina.

Additional information

Original Russian Text © V.A. Sanina, B.Kh. Khannanov, E.I. Golovenchits, M.P. Shcheglov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 3, pp. 531–542.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanina, V.A., Khannanov, B.K., Golovenchits, E.I. et al. Frozen Superparaelectric State of Local Polar Regions in GdMn2O5 and Gd0.8Ce0.2MnO5. Phys. Solid State 60, 537–548 (2018). https://doi.org/10.1134/S1063783418030289

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418030289

Navigation