Skip to main content
Log in

Optical Transitions from Core d Levels of Gallium Arsenide

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An improved parameter-free method of joint Argand diagrams was used to expand the permittivity spectrum of gallium arsenide in a region of 19–26 eV into 12 bands of optical transitions with determining their maximum and half-width energies, as well as the oscillator strengths. The values of oscillator strengths of the obtained bands lie within an interval from 0.0009 to 0.06. In the regions of 19.2–21.3 and 24–26 eV, the permittivity spectrum was preliminarily calculated on the basis of experimental reflectance spectra with the use of the Kramers–Kronig integral relation method. The nature of the obtained transition bands is suggested in terms of the band-to-band and exciton transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hilsum, Semicond. Sci. Technol. 28, 015028 (2013).

    Article  Google Scholar 

  2. V. I. Stafeev, Semiconductors 44, 551 (2010).

    Article  ADS  Google Scholar 

  3. I. Akasaki, Rev. Mod. Phys. 87, 1119 (2015).

    Article  ADS  Google Scholar 

  4. F. Bechstedt, Many-Body Approach to Electronic Excitations. Concepts and Applications (Springer, Berlin, 2015).

    MATH  Google Scholar 

  5. V. V. Sobolev, Optical Properties and Electron Structure of Non-Metals, Vol. 1: Introduction to the Theory (Inst. Komp’yut. Issled., Moscow, Izhevsk, 2012) [in Russian].

    Google Scholar 

  6. P. Yu and M. Cardona, Fundamentals of Semiconductor Physics (Springer, New York, 1996; Fizmatlit, Moscow, 2002).

    Book  MATH  Google Scholar 

  7. H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963).

    Article  ADS  Google Scholar 

  8. U. Buchner, Phys. Status Solidi B 81, 227 (1977).

    Article  ADS  Google Scholar 

  9. V. V. Sobolev, E. A. Antonov, and V. Val. Sobolev, Semiconductors 44, 1170 (2010).

    Article  ADS  Google Scholar 

  10. A. A. Lanin and A. M. Zheltikov, JETP Lett. 104, 449 (2016).

    Article  ADS  Google Scholar 

  11. V. V. Sobolev, D. A. Merzlyakov, and V. Val. Sobolev, J. Appl. Spectrosc. 83, 573 (2016).

    Article  ADS  Google Scholar 

  12. W. Gudat, E. E. Koch, P. Y. Yu, M. Cardona, and C. M. Penchina, Phys. Status Solidi B 52, 505 (1972).

    Article  ADS  Google Scholar 

  13. D. E. Aspnes, M. Cardona, V. Saile, M. Skibowski, and G. Sprussel, Solid State Commun. 31, 99 (1979).

    Article  ADS  Google Scholar 

  14. M. Skibowski, G. Sprussel, and V. Saile, Appl. Opt. 19, 3978 (1980).

    Article  ADS  Google Scholar 

  15. J. Barth, R. L. Johnson, M. Cardona, D. Fuchs, and A.M. Bradshaw, in Proc. of the 19th International Con-ference on Physics of Semiconductors (Polish Acad. Sci., Warsaw, 1988), Vol. 2, p. 885.

    Google Scholar 

  16. O. Gunther, C. Janowitz, G. Jungk, B. Jenichen, R. Hey, L. Daweritz, and K. Ploog, Phys. Rev. B 52, 2599 (1995).

    Article  ADS  Google Scholar 

  17. M. Rakel, C. Cobet, N. Esser, F. Fuchs, F. Bechstedt, R. Goldhahn, W. G. Schmidt, and W. Schaff, Phys. Rev. B 77, 115120 (2008).

    Article  ADS  Google Scholar 

  18. P. Gori, M. Rakel, C. Cobet, W. Richter, N. Esser, A. Hoffmann, R. D. Sole, A. Cricenti, and O. Pulci, Phys. Rev. B 81, 125207 (2010).

    Article  ADS  Google Scholar 

  19. K. Dorywalski, B. Andriyevsky, M. Piasecki, N. Lemee, A. Patryn, C. Cobet, and N. Esser, J. Appl. Phys. 114, 043513 (2013).

    Article  ADS  Google Scholar 

  20. S. Adachi, Phys. Rev. B 35, 7454 (1987).

    Article  ADS  Google Scholar 

  21. A. V. Bakulin and S. E. Kulkova, Russ. Phys. J. 57, 996 (2014).

    Article  Google Scholar 

  22. B. D. Malone and M. L. Cohen, J. Phys.: Condens. Matter 25, 105503 (2013).

    ADS  Google Scholar 

  23. M. Grüning, D. Sangalli, and C. Attaccalite, Phys. Rev. B 94, 035149 (2016).

    Article  ADS  Google Scholar 

  24. V. D. Dymnikov, Phys. Solid State 43, 2037 (2001).

    Article  ADS  Google Scholar 

  25. A. Said, M. Debbichi, and M. Said, Optik 127, 9212 (2016).

    Article  ADS  Google Scholar 

  26. P. Thiry, Y. Petroff, R. Pinchaux, J. R. Chelikowsky, and M. L. Cohen, Solid State Commun. 20, 1107 (1976).

    Article  ADS  Google Scholar 

  27. V. V. Sobolev and V. V. Nemoshkalenko, Methods of Computational Physics in Solid State Theory. Electronic Structure of Semiconductors (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  28. V. V. Sobolev, V. Val. Sobolev, and D. V. Anisimov, Phys. Solid State 57, 2489 (2015).

    Article  ADS  Google Scholar 

  29. V. V. Sobolev, Optical Properties and Electronic Structure of Monocarbon Media (Udmurtsk. Gos. Univ., Izhevsk, 2016), Vol. 1 [in Russian].

    Google Scholar 

  30. V. V. Sobolev. Optical Properties and Electronic Structure of Monocarbon Media (Udmurtsk. Gos. Univ., Izhevsk, 2016), Vol. 2 [in Russian].

    Google Scholar 

  31. V. V. Sobolev, Optical Properties and Electron Structure of Non-Metals (Inst. Komp’yut. Issled., Moscow, Izhevsk, 2012), Vol. 2 [in Russian].

    Google Scholar 

  32. R. O. Jones, Rev. Mod. Phys. 87, 897 (2015).

    Article  ADS  Google Scholar 

  33. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  34. A. Gulans, S. Kontur, Ch. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, and C. Draxl, J. Phys.: Condens. Matter 26, 363202 (2014).

    Google Scholar 

  35. J. Wang, Y. Zhang, and L.-W. Wang, Phys. Rev. B 92, 045211 (2015).

    Article  ADS  Google Scholar 

  36. A. Cakan, C. Sevik, and C. Bulutay, J. Phys. D: Appl. Phys. 49, 085104 (2016).

    Article  ADS  Google Scholar 

  37. C. S. Wang and B. M. Klein, Phys. Rev. B 24, 3417 (1981).

    Article  ADS  Google Scholar 

  38. N. N. Anua, R. Ahmed, A. Shaari, M. A. Saeed, B. U. Haq, and S. Goumri-Said, Semicond. Sci. Technol. 28, 105015 (2013).

    Article  ADS  Google Scholar 

  39. S. Sharma, J. K. Dewhurst, and C. Ambrosch-Draxl, Phys. Rev. Lett. 95, 136402 (2005).

    Article  ADS  Google Scholar 

  40. V. V. Sobolev and D. A. Perevoshchikov, Semiconductors 49, 570 (2015).

    Article  ADS  Google Scholar 

  41. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  42. N. J. Shevchik, J. Tejeda, and M. Cardona, Phys. Rev. B 9, 2627 (1974).

    Article  ADS  Google Scholar 

  43. T. Miller and T.-C. Chiang, Phys. Rev. B 29, 7034 (1984).

    Article  ADS  Google Scholar 

  44. S. L. Richardson, M. L. Cohen, S. G. Louie, and J. R. Chelikowsky, Phys. Rev. B 33, 1177 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sobolev.

Additional information

Original Russian Text © D.A. Perevoshchikov, V.V. Sobolev, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 3, pp. 476–481.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevoshchikov, D.A., Sobolev, V.V. Optical Transitions from Core d Levels of Gallium Arsenide. Phys. Solid State 60, 481–486 (2018). https://doi.org/10.1134/S1063783418030241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418030241

Navigation