Skip to main content
Log in

Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction ΔL/L. The measured ΔL/L(H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the ΔL/L(H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4–100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kimura, T. Goto, H. Shintani, and K. Ishizaka, Nature (London, U.K.) 426, 55 (2003).

    Article  ADS  Google Scholar 

  2. T. Lottermoser, T. Lonkai, U. Amann, and D. Hohlwein, Nature (London, U.K.) 430, 541 (2004).

    Article  ADS  Google Scholar 

  3. M. Fiebig, J. Phys. D 38 (8), R123 (2005).

    Article  ADS  Google Scholar 

  4. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London, U.K.) 442, 759 (2006).

    Article  ADS  Google Scholar 

  5. S. W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

    Article  ADS  Google Scholar 

  6. F. Yen, C. D. Cruz, B. Lorenz, E. Galstyan, and Y. Y. Sun, J. Mater. Res. 22, 2163 (2007).

    Article  ADS  Google Scholar 

  7. B. Lorenz, ISRN Condens. Matter Phys. 2013, 43 (2013).

    Article  Google Scholar 

  8. J. S. Zhou, J. B. Goodenough, J. M. Gallardo-Amores, E. Morán, M. A. Alario-Franco, and R. Caudillo, Phys. Rev. B 74, 014422 (2006).

    Article  ADS  Google Scholar 

  9. M. Mostovoy, Nat. Mater. 9, 188 (2010).

    Article  ADS  Google Scholar 

  10. O. P. Vajk, M. Kenzelmann, J. W. Lynn, S. B. Kim, and S.-W. Cheong, Phys. Rev. Lett. 94, 087601 (2005).

    Article  ADS  Google Scholar 

  11. O. P. Vajk, M. Kenzelmann, J. W. Lynn, S. B. Kim, and S.-W. Cheong, Appl. Phys. 99, 08E301 (2006).

    Article  Google Scholar 

  12. Sh.-Z. Lin, X. Wang, Y. Kamiya, G.-W. Chern, F. Fan, D. Fan, B. Casas, Y. Liu, V. Kiryukhin, W. H. Zurek, C. D. Batista, and S.-W. Cheong, Nat. Phys. 10, 970 (2014).

    Article  Google Scholar 

  13. H. Das, A. L. Wysocki, Y. Geng, W. Wu, and C. J. Fennie, Nat. Commun. 5, 2998 (2014).

    Article  ADS  Google Scholar 

  14. M. Fiebig, Th. Lottermoser, and R. V. Pisarev, J. Appl. Phys. 93, 8194 (2003).

    Article  ADS  Google Scholar 

  15. N. Lee, Y. J. Choi, M. Ramazanoglu, W. Ratcliff, V. Kiryukhin, and S.-W. Cheong, Phys. Rev. B 84, 020101(R) (2011).

    ADS  Google Scholar 

  16. G. Ping, W. WeiTian, Z. Wei, and S. Yu. Ming, Sci. China-Phys. Mech. Astron. 57, 1875 (2014).

    Google Scholar 

  17. W. Wang, B. Xu, P. Gao, W. Zhang, and Y. Sun, Solid State Commun. 177, 7 (2014).

    Article  ADS  Google Scholar 

  18. B. Khana, H. A. R. Aliabad, N. Razghandi, M. Maqbool, S. J. Asadabadi, and I. Ahmad, Comp. Phys. Commun. 187, 1 (2015).

    Article  ADS  Google Scholar 

  19. J. Vermette, S. Jandl, M. Orlita, and M. M. Gospodinov, Phys. Rev. B 85, 134445 (2012).

    Article  ADS  Google Scholar 

  20. M. Fiebig, C. Degenhardt, and R. V. Pisarev, J. Appl. Phys. 91, 8867 (2002).

    Article  ADS  Google Scholar 

  21. B. Lorenz, A. P. Litvinchuk, M. M. Gospodinov, and C. W. Chu, Phys. Rev. Lett. 92, 087204 (2004).

    Article  ADS  Google Scholar 

  22. H. Sugie, N. Iwata, and K. Kohn, J. Phys. Soc. Jpn. 71, 1558 (2002).

    Article  ADS  Google Scholar 

  23. S. Nandi, A. Kreyssig, L. Tan, J. W. Kim, J. Q. Yan, J. C. Lang, D. Haskel, R. J. McQueeney, and A. I. Goldman, Phys. Rev. Lett. 100, 217201 (2008).

    Article  ADS  Google Scholar 

  24. A. Muñoz, J. A. Alonso, M. J. Martínez-Lope, M. T. Casáis, J. L. Martínez, and M. T. Fernández-Díaz, Chem. Mater. 13, 1497 (2001).

    Article  Google Scholar 

  25. S. Lee, A. Pirogov, M. Kang, K.-H. Jang, M. Yonemura, T. Kamiyama, S.-W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J.-G. Park, Nature (London, U.K.) 451, 805 (2008).

    Article  ADS  Google Scholar 

  26. N. V. Mushnikov and T. Goto, Phys. Rev. B 70, 054411 (2004).

    Article  ADS  Google Scholar 

  27. C. Fan, Z. Y. Zhao, J. D. Song, J. C. Wu, F. B. Zhang, and X. F. Sun, J. Cryst. Growth 388, 54 (2014).

    Article  ADS  Google Scholar 

  28. A. D. Balaev, Yu. V. Boyarshinov, M. M. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).

    Google Scholar 

  29. V. I. Nizhankovskii, Eur. Phys. J. B 71, 55 (2009).

    Article  ADS  Google Scholar 

  30. M. Doerr, M. Rotter, and A. Lindbaum, Adv. Phys. 54 (1), 1 (2005).

    Article  ADS  Google Scholar 

  31. M. Diviš, J. Hölsä, M. Lastusaari, A. P. Litvinchuk, and V. Nekvasil, J. Alloys Compd. 451, 662 (2008).

    Article  Google Scholar 

  32. X. Fabrèges, I. Mirebeau, P. Bonville, S. Petit, G. Lebras-Jasmin, A. Forget, G. André, and S. Pailhès, Phys. Rev. B 78, 214422 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Pavlovskii.

Additional information

Original Russian Text © N.S. Pavlovskii, A.A. Dubrovskii, S.E. Nikitin, S.V. Semenov, K.Yu. Terent’ev, K.A. Shaikhutdinov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 3, pp. 515–520.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlovskii, N.S., Dubrovskii, A.A., Nikitin, S.E. et al. Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals. Phys. Solid State 60, 520–526 (2018). https://doi.org/10.1134/S1063783418030228

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418030228

Navigation