Physics of the Solid State

, Volume 60, Issue 1, pp 147–152 | Cite as

Luminescence of impurity Ce3+ centers in KH2PO4 : Ce crystals

  • V. A. Pustovarov
  • I. N. Ogorodnikov
  • S. I. Omel’kov
Impurity Centers
  • 6 Downloads

Abstract

The photoluminescence, X-ray luminescence, and cathodoluminescence spectra of KH2PO4 : Ce single crystals contain a nonelementary band of radiation with an energy of 3.55 eV and decay time of 27–33 ns. It is formed by fast radiative interconfiguration df transitions between the excited and ground states of Ce3+ ions, with the ground state is split by a crystalline field. In the range of concentrations studied (0.5–3 × 10–2 wt %), Ce3+ ions enter the KH2PO4 : Ce crystal lattice as substitution ions. Local charge compensation takes place by means of defects in the crystal structure that cause luminescence with a large Stokes shift in the region of 2.4–2.2 eV. The presence of hydrogen sublattice defects decreases the efficiency of energy transport by free charge carriers to the luminescent centers. The interaction of defects and impurity centers manifests itself as a slow inertial building-up of the stationary X-ray luminescence yield of Ce3+ centers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. N. Rashkovich, KDP—Family Single Crystals (Adam Hilger, Philadelphia, 1991).Google Scholar
  2. 2.
    W. L. Smith, Appl. Opt. 16, 1798 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    D. Eimer, Ferroelectrics 72, 95 (1987).CrossRefGoogle Scholar
  4. 4.
    I. V. Shnaidshtein and B. A. Strukov, Phys. Solid State 48, 2142 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    I. N. Ogorodnikov, M. Kirm, V. A. Pustovarov, and V. S. Cheremnykh, Opt. Spectrosc. 95, 385 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    I. N. Ogorodnikov, M. Kirm, and V. A. Pustovarov, Rad. Meas. 42, 746 (2007).CrossRefGoogle Scholar
  7. 7.
    I. Fujita, Phys. Rev. B 49, 6462 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    I. N. Ogorodnikov, V. A. Pustovarov, V. M. Puzikov, V. I. Salo, and A. P. Voronov, Opt. Mater. 34, 1522 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    I. N. Ogorodnikov and V. A. Pustovarov, J. Exp. Theor. Phys. 124, 592 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    A. P. Voronov, V. I. Salo, V. M. Puzikov, V. F. Tkachenko, and Y. T. Vydai, Crystallogr. Rep. 51, 696 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    A. P. Voronov, Y. T. Vyday, V. I. Salo, V. M. Puzikov, and S. I. Bondarenko, Rad. Meas. 42, 553 (2007).CrossRefGoogle Scholar
  12. 12.
    V. I. Salo, V. F. Tkachenko, A. P. Voronov, V. M. Puzikov, and V. A. Tsurikov, Funct. Mater. 12, 658 (2005).Google Scholar
  13. 13.
    G. L. Smolenskii, V. A. Bokov, and V. A. Isupova, Ferroelectrics and Antiferroelectrics (Nauka, Leningrad, 1971) [in Russian].Google Scholar
  14. 14.
    G. Zimmerer, Rad. Meas. 42, 859 (2007).CrossRefGoogle Scholar
  15. 15.
    V. A. Rustovarov, E. I. Zinin, A. L. Krymov, and B. V. Shulgin, Rev. Sci. Instrum. 63, 3521 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    S. I. Omelkov, V. Nagirnyi, A. N. Vasil’ev, and M. Kirm, J. Lumin. 176, 309 (2016).CrossRefGoogle Scholar
  17. 17.
    D. Wisniewski and L. A. Boatner, IEEE Trans. Nucl. Sci. 56 (6), 38 (2009).CrossRefGoogle Scholar
  18. 18.
    V. A. Pustovarov, A. N. Razumov, and D. I. Vyprintsev, Phys. Solid State 56, 347 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    V. A. Pustovarov, I. N. Ogorodnikov, A. A. Goloshumova, L. I. Isaenko, and A. P. Yelisseyev, Opt. Mater. 34, 926 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    D. I. Vaisburd, B. N. Semin, E. G. Tavanov, S. B. Matlis, I. N. Balychev, and G. I. Gerina, High Power Solid State Electronics (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  21. 21.
    P. Dorenbos, Phys. Rev. B 64, 125117 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    E. V. D. van Loef, P. Dorenbos, C. W. E. van Eijk, K. W. Krämer, and H. U. Güdel, Phys. Rev. B 68, 045108 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    V. N. Makhov, M. Kirm, G. Stryganyuk, S. Vielhauer, G. Zimmerer, B. Z. Malkin, O. V. Solovyev, and S. L. Korableva, J. Lumin. 132, 418 (2012).CrossRefGoogle Scholar
  24. 24.
    I. N. Ogorodnikov, V. A. Pustovarov, B. V. Shul’gin, V. T. Kuanyshev, and M. K. Satybaldieva, Opt. Spectrosc. 91, 224 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    K. A. Müller, Ferroelectrics 72, 273 (1987).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Pustovarov
    • 1
  • I. N. Ogorodnikov
    • 1
  • S. I. Omel’kov
    • 2
  1. 1.Ural Federal UniversityYekaterinburgRussia
  2. 2.Institute of PhysicsUniversity of TartuTartuEstonia

Personalised recommendations