Skip to main content
Log in

Atomic and electron structure of reconstructed (111) surface in ZnSe and CdSe crystals

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The atomic and electron structure of four variants of polar (111)-(2 × 2) surfaces in ZnSe and CdSe terminated by a cation, namely, the ideal, relaxed, reconstructed, and relaxed after reconstruction surfaces, are calculated for the first time from the first principles. The surface is simulated by a film with a thickness of 12 atomic layers and a vacuum gap of ~16 Å in the layered superlattice approximation. Four fictitious hydrogen atoms with a charge of 0.5 electrons each are added for closing dangling Se bonds on the opposite side of the film. Ab initio calculations are performed using the QUANTUM ESPRESSO software based on the density functional theory. It is shown that relaxation results in splitting of atomic layers. We calculate and analyze the band structures and total and layer-wise densities of electron states for four variants of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. LaFemina, Surf. Sci. Rep. 16, 133 (1992).

    Article  ADS  Google Scholar 

  2. G. P. Srivastava, Theoretical Modeling of Semiconductor Surfaces (World Scientific, Singapore, 1999), p. 201.

    Book  Google Scholar 

  3. J. A. Venables, Introduction to Surface and Thin Film Processes (Cambridge Univ. Press, Arizona State Univ., Univ. Sussex, 2003).

    Google Scholar 

  4. A. Groß, Theoretical Surface Science (Springer, Berlin, Heidelberg, 2009).

    Book  Google Scholar 

  5. K. Hermann, Crystallography and Surface Structure. An Introduction for Surface Scientists and Nanoscientists (Wiley–VCH, Weinheim, 2011).

    Book  Google Scholar 

  6. II–VI Semiconductor Compounds, Ed. by M. Jain (World Scientific, Singapore, 1993).

    Google Scholar 

  7. R. W. Birkmire and E. Eser, Ann. Rev. Mater. Sci. 27, 625 (1997).

    Article  ADS  Google Scholar 

  8. M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991).

    Article  ADS  Google Scholar 

  9. N. Nakayama, S. Itoh, T. Ohata, K. Nakano, H. Okuyama, M. Ozawa, A. Ishibashi, M. Ikeda, and Y. Mori, Electron. Lett. 29, 2194 (1993).

    Article  Google Scholar 

  10. A. Salokatve, H. Jeon, J. Ding, M. Hovinen, A. V. Nurmikko, D. C. Grillo, Li He, J. Han, Y. Fan, M. Ringle, R. L. Gunshor, G. C. Hua, and N. Otsuka, Electron. Lett. 29, 2192 (1993).

    Article  Google Scholar 

  11. D. J. Chadi, J. Vac. Sci. Technol. A 4, 944 (1986).

    Article  ADS  Google Scholar 

  12. L. Zhu, K. L. Yao, Z. L. Liu, and Y. B. Li, J. Phys.: Condens. Matter 21, 095001 (2009).

    ADS  Google Scholar 

  13. L. Plucinski, Dissertation (Hamburg, 2002).

    Google Scholar 

  14. W. Weigand, A. Müller, L. Kilian, O. Bunk, T. Schallenberg, P. Bach, L. Molenkamp, W. Faschinger, R. L. Johnson, C. Kumpf, and E. Umbach, Hasylab Ann. Rep. 2002, Pt. 1 (HASYLAB, Hamburg, 2003).

    Google Scholar 

  15. D. Olguin and R. Baquero, Rev. Mex. Fis. 49, 1 (2003).

    Google Scholar 

  16. L. Plucinski, R. L. Johnson, A. Fleszar, W. Hanke, W.Weigand, C. Kumpf, C. Heske, E. Umbach, T. Schallenberg, and L. W. Molenkamp, Phys. Rev. B 70, 125308 (2004).

    Article  ADS  Google Scholar 

  17. L. Plucinski, W. Weigand, C. Kumpf, C. Heske, R. Kosuch, T. Schallenberg, L. W. Molenkamp, E. Umbach, and R. L. Johnson, Surf. Sci. 585, 95 (2005).

    Article  ADS  Google Scholar 

  18. Y. Yu, J. Zhou, H. Han, C. Zhang, T. Cai, C. Song, and T. Gao, J. Alloys Compd. 471, 492 (2009).

    Article  Google Scholar 

  19. A. Rubio-Ponce and D. Olguin, J. Phys.: Conf. Ser. 574, 012118 (2015).

    Google Scholar 

  20. J. Zhou, B. G. Sumpter, P. R. C. Kent, and J. Huang, Appl. Mater. Interfaces 7, 1458 (2015).

    Article  Google Scholar 

  21. V. L. Bekenev and S. M. Zubkova, Phys. Solid State 57, 1878 (2015).

    Article  ADS  Google Scholar 

  22. V. L. Bekenev and S. M. Zubkova, Semiconductors 51, 23 (2017).

    Article  ADS  Google Scholar 

  23. P. Giannozzi, S. Baroni, N. Bonini, M. Calra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  24. K. Shiraishi, J. Phys. Soc. Jpn. 59, 3455 (1990).

    Article  ADS  Google Scholar 

  25. Landolt-Börnstein, New Series III, Ed. by O. Madelung (Springer, Berlin, 1987), Vol. 22.

  26. J. P. Perdew, Int. J. Quantum Chem. 28 (S19), 497 (1985).

    Article  Google Scholar 

  27. J. L. Martins, in Density Functional Theory, Ed. by P. Geerlings, F. de Proft, and W. Langenaeker (VUB Univ. Press, Brussels, 1999), p. 217.

  28. S. de Lazaro, E. Longo, J. R. Sambrano, and A. Beltran, Surf. Sci. 552, 149 (2004).

    Article  ADS  Google Scholar 

  29. S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, Comp. Mater. Sci. 29, 165 (2004).

    Article  Google Scholar 

  30. J. Muscat, F. Wander, and N. M. Harrison, Chem. Phys. Lett. 342, 397 (2001).

    Article  ADS  Google Scholar 

  31. E. Heifets, R. I. Eglitis, E. A. Kotomin, J. Maier, and G. Borstel, Surf. Sci. 513, 211 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Bekenev.

Additional information

Original Russian Text © V.L. Bekenev, S.M. Zubkova, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 1, pp. 187–201.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekenev, V.L., Zubkova, S.M. Atomic and electron structure of reconstructed (111) surface in ZnSe and CdSe crystals. Phys. Solid State 60, 191–206 (2018). https://doi.org/10.1134/S1063783418010031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418010031

Navigation