Skip to main content
Log in

Influence of the bilayer thickness of nanostructured multilayer MoN/CrN coating on its microstructure, hardness, and elemental composition

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Multilayer nanostructured coatings consisting of alternating MoN and CrN layers were obtained by vacuum cathode evaporation under various conditions of deposition. The transition from micron sizes of bilayers to the nanometer scale in the coatings under investigation leads to an increase in hardness from 15 to 35.5 GPa (with a layer thickness of about 35 nm). At the same time, when the number of bilayers in the coating decreases, the average Vickers hardness increases from 1267 HV0.05 to 3307 HV0.05. An increase in the value of the potential supplied to the substrate from–20 to–150 V leads to the formation of growth textures in coating layers with the [100] axis, and to an increase in the intensity of reflections with increasing bilayer thickness. Elemental analysis carried out with the help of Rutherford backscattering, secondary ion mass spectrometry and energy dispersion spectra showed a good separation of the MoN and CrN layers near the surface of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanostructured Coatings, Ed. by A. Cavaleiro and J. T. M. de Hosson (Springer, New York, 2006).

  2. R. L. Boxman, V. N. Zhitomirsky, I. Grimberg, L. Rapoport, S. Goldsmith, and B. Z. Weiss, Surf. Coat. Technol. 125, 257 (2000).

    Article  Google Scholar 

  3. P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, Prog. Mater. Sci. 51, 1032 (2006).

    Article  Google Scholar 

  4. A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, Phys. Usp. 52, 29 (2009).

    Article  ADS  Google Scholar 

  5. A. D. Pogrebnjak, A. G. Ponomarev, A. P. Shpak, and Yu. A. Kunitskii, Phys. Usp. 55, 270 (2012).

    Article  ADS  Google Scholar 

  6. T. N. Koltunowicz, P. Zukowski, V. Bondariev, K. Czarnacka, O. Boiko, J. A. Fedotova, and J. V. Kasiuk, J. Alloys Compd. 650, 262 (2015).

    Article  Google Scholar 

  7. Ya. A. Lyashenko and A. N. Zaskoka, Tech. Phys. 60, 1014 (2015).

    Article  Google Scholar 

  8. S. N. Danilchenko, A. V. Koropov, I. Y. Protsenko, B. Sulkio-Cleff, and L. F. Sukhodub, Cryst. Res. Technol. 41, 268 (2006).

    Article  Google Scholar 

  9. T. N. Koltunowicz, P. Zhukowski, V. Bondariev, J. A. Fedotova, and A. K. Fedotov, Acta Phys. Polon. A 123, 932 (2013).

    Article  Google Scholar 

  10. V. M. Beresnev, O. V. Sobol’, A. D. Pogrebnjak, P. V. Turbin, and S. V. Litovchenko, Tech. Phys. 55, 871 (2010).

    Article  Google Scholar 

  11. M. K. Samani, X. Z. Ding, N. Khosravian, B. Amin-Ahmadi, Y. Yi, G. Chen, E. C. Neyts, A. Bogaerts, and B. K. Tay, Thin Solid Films 578, 133 (2015).

    Article  ADS  Google Scholar 

  12. Z. H. Xie, M. Hoffman, P. Munroe, R. Singh, A. Bendavid, and P. J. Martin, J. Mater. Res. 22, 2312 (2007).

    Article  ADS  Google Scholar 

  13. J. Lackner, L. Major, and M. Kot, Bull. Polon. Acad. Sci.: Tech. Sci. 59, 343 (2011).

    Google Scholar 

  14. A. D. Pogrebnjak, S. Bratushka, V. I. Boyko, I. V. Shamanin, and Y. V. Tsvintarnaya, Nucl. Instrum. Meth. Phys. Res. B 145, 373 (1998).

    Article  ADS  Google Scholar 

  15. A. Gilewicz and B. Warcholinski, Tribol. Int. 80, 34 (2014).

    Article  Google Scholar 

  16. R. A. Koshy, M. E. Graham, and L. D. Marks, Surf. Coat. Technol. 202, 1123 (2007).

    Article  Google Scholar 

  17. V. Ivashchenko, S. Veprek, A. Pogrebnjak, and B. Postolnyi, Sci. Technol. Adv. Mater. 15, 25007 (2014).

    Article  Google Scholar 

  18. A. Komarov, F. Komarov, P. ukowski, C. Karwat, and A. Kamarou, Vacuum 63, 495 (2001).

    Article  Google Scholar 

  19. A. D. Pogrebnyak, O. M. Ivasishin, and V. M. Beresnev, Usp. Fiz. Met. 17, 1 (2016).

    Article  Google Scholar 

  20. A. D. Pogrebnjak, D. Eyidi, G. Abadias, O. V. Bondar, V. M. Beresnev, and O. V. Sobol, Int. J. Refract. Met. Hard Mater. 48, 222 (2015).

    Article  Google Scholar 

  21. L. S. Metlov, M. M. Myshlyaev, A. V. Khomenko, and Ya. A. Lyashenko, Tech. Phys. Lett. 38, 972 (2012).

    Article  ADS  Google Scholar 

  22. S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova, and J. Prochazka, Thin Solid Films 476, 1 (2005).

    Article  ADS  Google Scholar 

  23. A. D. Pogrebnjak, G. Abadias, O. V. Bondar, B. O. Postolnyi, M. O. Lisovenko, O. V. Kyrychenko, A. A. Andreev, V. M. Beresnev, D. A. Kolesnikov, and M. Opielak, Acta Phys. Polon. A 125, 1280 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Pogrebnyak.

Additional information

Original Russian Text © A.D. Pogrebnyak, O.V. Bondar, B. Zhollybekov, S. Konstantinov, P. Konarski, V.M. Beresnev, A.I. Kupchishin, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 9, pp. 1773–1777.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogrebnyak, A.D., Bondar, O.V., Zhollybekov, B. et al. Influence of the bilayer thickness of nanostructured multilayer MoN/CrN coating on its microstructure, hardness, and elemental composition. Phys. Solid State 59, 1798–1802 (2017). https://doi.org/10.1134/S1063783417090232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417090232

Navigation