Skip to main content
Log in

The contribution of hole traps to thermoluminescence of the dosimetric peak in anion-defect α-Al2O3 single crystals

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermoluminescent properties of anion-defect alumina single crystals with different FWHMs of the main (dosimetric) peak at 400–500 K are studied. New experimental evidence in favor of the hole nature of traps associated with the high-temperature part of this peak are presented. The introduction of hole trap centers into analysis provided theoretical justification for the experimentally observed dependences of the thermoluminescence (TL) intensity, the temperature position of the main peak, and its FWHM on the occupancy of deep traps. The hole nature of traps of the high-temperature part of the main TL peak is confirmed by the results of examination of specific TL features of shallow trap centers, which govern TL at 350 K, and the temperature variation of the main TL peak spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Aksel’rod, V. S. Kortov, I. I. Mil’man, E. A. Gorelova, A. A. Borisov, L. M. Zatulovskii, D. Ya. Kravetskii, I. E. Berezina, and N. K. Lebedev, Izv. Akad. Nauk SSSR, Ser. Fiz. 52, 1981 (1988).

    Google Scholar 

  2. S. W. S. McKeever, M. S. Akselrod, L. E. Colyott, N. Agersnap Larsen, J. C. Polf, and V. Whitley, Radiat. Prot. Dosim. 84, 163 (1999).

    Article  Google Scholar 

  3. K. H. Lee and J. H. Crawford, Phys. Rev. B 15, 4065 (1977).

    Article  ADS  Google Scholar 

  4. V. S. Kortov, I. I. Mil’man, and S. V. Nikiforov, Phys. Solid State 39, 1369 (1997).

    Article  ADS  Google Scholar 

  5. A. E. Akselrod and M. S. Akselrod, Radiat. Prot. Dosim. 100, 217 (2002).

    Article  Google Scholar 

  6. G. I. Dallas, D. Afouxenidis, E. C. Stefanaki, N. F. Tsagas, G. S. Polymeris, N. C. Tsirliganis, and G. Kitis, Phys. Status Solidi A 205, 1672 (2008).

    Article  ADS  Google Scholar 

  7. G. S. Polymeris and G. Kitis, Appl. Radiat. Isotopes 70, 2478 (2012).

    Article  Google Scholar 

  8. L. E. Colyott, M. S. Akselrod, and S. W. S. McKeever, Radiat. Prot. Dosim. 65, 263 (1996).

    Article  Google Scholar 

  9. F. D. Walker, L. E. Colyott, N. Agersnap Larsen, and S. W. S. McKeever, Radiat. Meas. 26, 711 (1996).

    Article  Google Scholar 

  10. E. G. Yukihara, V. H. Whitley, J. C. Polf, D. M. Klein, S. W. S. McKeever, A. E. Akselrod, and M. S. Akselrod, Radiat. Meas. 37, 627 (2003).

    Article  Google Scholar 

  11. S. V. Nikiforov, V. S. Kortov, A. A. Nosal, and E. V. Moiseikin, Phys. Solid State 53, 2141 (2011).

    Article  ADS  Google Scholar 

  12. V. H. Whitley and S. W. S. McKeever, Radiat. Prot. Dosim. 100, 61 (2002).

    Article  Google Scholar 

  13. E. G. Yukihara, V. H. Whitley, S. W. S. McKeever, A. E. Akselrod, and M. S. Akselrod, Radiat. Meas. 38, 317 (2004).

    Article  Google Scholar 

  14. G. I. Dallas, G. S. Polymeris, E. C. Stefanaki, D. Afouxenidis, N. C. Tsirliganis, and G. Kitis, Radiat. Meas. 43, 335 (2008).

    Article  Google Scholar 

  15. B. J. Jeffries, J. D. Brewer, and G. P. Summers, Phys. Rev. B 24, 6074 (1981).

    Article  ADS  Google Scholar 

  16. M. S. Akselrod and E. A. Gorelova, Nucl. Tracks Radiat. Meas. 21, 143 (1993).

    Article  Google Scholar 

  17. S. V. Nikiforov, V. S. Kortov, S. V. Zvonarev, E. V. Moiseykin, and M. G. Kazantseva, Radiat. Meas. 71, 74 (2014).

    Article  Google Scholar 

  18. I. I. Mil’man, V. S. Kortov, and S. V. Nikiforov, Phys. Solid State 40, 206 (1998).

    Article  ADS  Google Scholar 

  19. I. I. Mil’man, E. V. Moiseikin, S. V. Nikiforov, S. V. Solov’ev, I. G. Revkov, and E. N. Litovchenko, Phys. Solid State 50, 2076 (2008).

    Article  ADS  Google Scholar 

  20. A. I. Surdo, R. M. Abashev, I. I. Milman, and E. V. Moiseykin, Radiat. Meas. 90, 192 (2016).

    Article  Google Scholar 

  21. S. V. Nikiforov and V. S. Kortov, Radiat. Meas. 45, 527 (2010).

    Article  Google Scholar 

  22. R. Chen and G. Fogel, Radiat. Prot. Dosim. 47, 23 (1993).

    Article  Google Scholar 

  23. R. Chen, G. Fogel, and C. K. Lee, Radiat. Prot. Dosim. 65, 63 (1996).

    Article  Google Scholar 

  24. V. Pagonis, R. Chen, and J. L. Lawless, Radiat. Meas. 42, 198 (2007).

    Article  Google Scholar 

  25. V. S. Kortov, S. V. Nikiforov, and E. Z. Sadykova, Funct. Mater. 2, 282 (2005).

    Google Scholar 

  26. D. R. Mishra, M. S. Kulkarni, K. P. Muthe, C. Thinaharan, M. Roy, S. K. Kulshreshtha, S. Kannan, B. C. Bhatt, S. K. Gupta, and D. N. Sharma, Radiat. Meas. 42, 170 (2007).

    Article  Google Scholar 

  27. M. S. Akselrod, V. S. Kortov, and E. A. Gorelova, Radiat. Prot. Dosim. 47, 159 (1993).

    Article  Google Scholar 

  28. A. S. Vokhmintsev, M. G. Minin, A. M. A. Henaish, and I. A. Weinstein, Measurement 66, 90 (2015).

    Article  Google Scholar 

  29. R. Chen, V. Pagonis, and J. L. Lawless, Radiat. Meas. 43, 162 (2008).

    Article  Google Scholar 

  30. J. L. Lawless, R. Chen, and V. Pagonis, J. Phys. D 42, 155409 (2009).

    Article  ADS  Google Scholar 

  31. V. S. Kortov, S. V. Nikiforov, and E. Z. Sadykova, Russ. Phys. J. 49, 221 (2006).

    Article  Google Scholar 

  32. M. S. Akselrod and V. S. Kortov, Radiat. Prot. Dosim. 33, 123 (1990).

    Article  Google Scholar 

  33. I. I. Milman, E. V. Moiseykin, S. V. Nikiforov, S. G. Mikhailov, and V. I. Solomonov, Radiat. Meas. 38, 443 (2004).

    Article  Google Scholar 

  34. A. C. Lucas and B. K. Lucas, Radiat. Prot. Dosim. 85, 455 (1999).

    Article  Google Scholar 

  35. B. C. Bhatt, P. S. Page, N. S. Rawat, B. S. Dhabekar, D. R. Mishra, and M. S. Kulkarni, Radiat. Meas. 43, 327 (2008).

    Article  Google Scholar 

  36. T. S. Bessonova, T. I. Gimadova, I. A. Tale, L. A. Avvakumova, and L. A. Litvinov, Zh. Prikl. Spektrosk. 54, 433 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nikiforov.

Additional information

Original Russian Text © S.V. Nikiforov, V.S. Kortov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 9, pp. 1695–1702.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, S.V., Kortov, V.S. The contribution of hole traps to thermoluminescence of the dosimetric peak in anion-defect α-Al2O3 single crystals. Phys. Solid State 59, 1717–1724 (2017). https://doi.org/10.1134/S1063783417090220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417090220

Navigation