Skip to main content
Log in

The physical and mechanical properties and local deformation micromechanisms in materials with different dependence of hardness on the depth of print

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The size hardness effects are studied via the micro- and nanoindentation methods over the wide range of the depth of print h (from dozens of nanometers to several dozen micrometers) for several classes of materials, such as ionic and covalent single crystals (sapphire, silicon, lithium fluoride); metals (single-crystal Al, polycrystalline Cu, Ni, and Nb); ceramics (high-strength nanostructured TZP-ceramic based on the natural zirconium dioxide–baddeleyite mineral); amorphous materials (fused quartz); and polymers (polycarbonate and polytetrafluoroethylene). As is shown, some of them possess severe size hardness effects, whereas the others reveal the weak ones or even a lack of these effects. The thermoactivation analysis is implemented, as well, and the activating and energy characteristics of local deformation processes induced by an indenter are compared with the dominant plasticity micromechanisms of the studied materials at different stages of the print formation and with the size peculiarities. The materials with low hardness coefficients and meeting the requirements of ISО 14577 and GOST R 8.748-2011 standards in the nanohardness measurements are highlighted, as well. In the established load ranges, these materials are the promising candidates for their use as reference samples, which are designed to ensure the uniformity of the hardness measurements at the nano- and microscales, as well as for calibrating and testing the nanoindentometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Springer Handbook of Nanotechnology, Ed. by B. Bhushan (Springer, Berlin, 2010).

  2. Yu. I. Golovin, Principles of Nanotechnology (Mashinostroenie, Moscow, 2012) [in Russian].

    Google Scholar 

  3. A. C. Fischer-Cripps, Nanoindentation (Springer, New York, 2011).

    Book  Google Scholar 

  4. Yu. I. Golovin, Nanoindentation and Its Possibilities (Mashinostroenie, Moscow, 2009) [in Russian].

    Google Scholar 

  5. A. S. Grashchenko, S. A. Kukushkin, and A. V. Osipov, Tech. Phys. Lett. 40, 1114 (2014).

    Article  ADS  Google Scholar 

  6. W. D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  ADS  Google Scholar 

  7. L. A. Berla, S. W. Lee, Yi. Cui, and W. D. Nix, J. Power Sources 273, 41 (2015).

    Article  ADS  Google Scholar 

  8. X. Qiao, L. Han, W. Zhang, and J. Gu, Mater. Characteriz. 110, 86 (2015).

    Article  Google Scholar 

  9. T. Csanádi, S. Grasso, A. Kovalcíková, J. Dusza, and M. Reece, J. Eur. Ceram. Soc. 36, 239 (2016).

    Article  Google Scholar 

  10. D. Wu, J. S. C. Jang, and T. G. Nieh, Intermetallics 68, 118 (2016).

    Article  Google Scholar 

  11. Yu. I. Golovin, Phys. Solid State 50, 2205 (2008).

    Article  ADS  Google Scholar 

  12. Yu. I. Golovin, V. M. Vasyukov, V. V. Korenkov, P. A. Stolyarov, A. V. Shuklinov, and L. E. Polyakov, Tech. Phys. 56, 642 (2011).

    Article  Google Scholar 

  13. Yu. I. Golovin, V. I. Ivolgin, A. I. Tyurin, S. V. Potapov, V. Z. Bengus, and E. D. Tabachnikova, Crystallogr. Rep. 50, 291 (2005).

    Article  ADS  Google Scholar 

  14. M. Sh. Akchurin, R. V. Gainutdinov, E. A. Garibin, Yu. I. Golovin, A. A. Demidenko, K. V. Dukel’skii, S. V. Kuznetsov, I. A. Mironov, V. V. Osiko, A. N. Smirnov, N. Yu. Tabachkova, A. I. Tyurin, P. P. Fedorov, and V. V. Shindyapin, Perspekt. Mater., No. 5, 5 (2010).

    Google Scholar 

  15. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  ADS  Google Scholar 

  16. W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  ADS  Google Scholar 

  17. D. M. Dimiduk, M. D. Uchic, and T. A. Parthasarathy, Acta Mater. 53, 4065 (2005).

    Article  Google Scholar 

  18. J. Biener, A. M. Hodge, J. R. Hayes, C. A. Volkert, L. A. Zepeda-Ruiz, Al. V. Hamza, and F. F. Abraham, Nano Lett. 6, 2379 (2006).

    Article  ADS  Google Scholar 

  19. F. Xu, Y. H. Ding, X. H. Deng, P. Zhang, and Z. L. Long, Physica B 450, 84 (2014).

    Article  ADS  Google Scholar 

  20. D. Maharaj and B. Bhushan, Mater. Sci. Eng. R 95, 1 (2015).

    Article  Google Scholar 

  21. K. Herrmann, N. M. Jennett, S. Kuypers, I. McEntegaart, C. Ingelbrecht, U. Hangen, T. Chudoba, F. Pohlenz, and F. Menelaoa, Z. Metallk. 94, 802 (2003).

    Article  Google Scholar 

  22. Hardness Testing: Principles and Applications, Ed. by K. Herrmann (ASM Int., Materials Park, Ohio, 2011).

  23. Yu. I. Golovin, A. I. Tyurin, and V. V. Khlebnikov, Tech. Phys. 50, 479 (2005).

    Article  Google Scholar 

  24. Yu. I. Golovin, A. I. Tyurin, and B. Ya. Farber, Philos. Mag. A 82, 1857 (2002).

    Article  ADS  Google Scholar 

  25. Yu. I. Golovin, A. I. Tyurin, and B. Ya. Farber, J. Mater. Sci. 37, 895 (2002).

    Article  ADS  Google Scholar 

  26. Yu. I. Golovin, V. I. Ivolgin, A. I. Tyurin, and V. A. Khonik, Phys. Solid State 45, 1267 (2003).

    Article  ADS  Google Scholar 

  27. Yu. I. Golovin, A. A. Shibkov, Yu. S. Boyarskaya, M. S. Kats, and A. I. Tyurin, Sov. Phys. Solid State 30, 2005 (1988).

    Google Scholar 

  28. S. D. Viktorov, Yu. I. Golovin, A. N. Kochanov, A. I. Tyurin, A. V. Shuklinov, I. A. Shuvarin, and T. S. Pirozhkova, Fiz.-Tekh. Probl. Razrab. Polezn. Iskopaemykh 50, 46 (2014).

    Google Scholar 

  29. Yu. I. Golovin, R. B. Morgunov, D. V. Lopatin, A. A. Baskakov, and Ya. E. Evgen’ev, Phys. Solid State 40, 1870 (1998).

    Article  ADS  Google Scholar 

  30. Yu. I. Golovin and R. B. Morgunov, Phys. Solid State 43, 859 (2001).

    Article  ADS  Google Scholar 

  31. Yu. A. Osip’yan, Yu. I. Golovin, R. B. Morgunov, R.K.Nikolaev, I. A. Pushnin, and S. Z. Shmurak, Phys. Solid State 43, 1389 (2001).

    Article  ADS  Google Scholar 

  32. Yu. Golovin, R. Morgunov, and A. Baskakov, Mol. Phys. 100, 1291 (2002).

    Article  ADS  Google Scholar 

  33. Yu. I. Golovin and R. B. Morgunov, JETP Lett. 61, 596 (1995).

    ADS  Google Scholar 

  34. GOST (State Standard) R 8.748-2011 (Standartinform, Moscow, 2013).

  35. ISO Standard No. 14577-1–3 (2002), ISO Standard No. 14577-4 (2007).

  36. X. Feng, Y. Hyang, and K. Hwang, in Micro- and Nano Mechnical Testing of Materials and Devices, Ed. by F. Yang and J. C. M. Li (Springer, New York, 2008), p. 49.

    Google Scholar 

  37. Yu. R. Kolobov, Diffusion Controlled Processes on Grain Boundaries and Plasticity of Metal Polycrystals (Nauka, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  38. R. A. Andrievski and A. M. Glezer, Phys. Usp. 52, 315 (2009).

    Article  ADS  Google Scholar 

  39. Y. Y. Lim and M. M. Chaudhri, Philos. Mag. A 82, 2071 (2002).

    Article  ADS  Google Scholar 

  40. I. Manika and J. Maniks, Acta Mater. 54, 2049 (2006).

    Article  Google Scholar 

  41. S. Qu, Y. Huang, W. D. Nix, H. Jiang, F. Zhang, and K. C. Hwang, J. Mater. Res. 19, 3423 (2004).

    Article  ADS  Google Scholar 

  42. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  43. T. P. Remington, C. J. Ruestes, E. M. Bringa, B. A. Remington, C. H. Lu, B. Kad, and M. A. Meyers, Acta Mater. 78, 378 (2014).

    Article  Google Scholar 

  44. C. J. Ruestes, A. Stukowski, Y. Tang, D. R. Tramontina, P. Erhart, B. A. Remington, H. M. Urbassek, M. A. Meyers, and E. M. Bringa, Mater. Sci. Eng. A 613, 390 (2014).

    Article  Google Scholar 

  45. A. E. Romanov, A. L. Kolesnikova, I. A. Ovid’ko, and E. C. Aifantis, Mater. Sci. Eng. A 503, 62 (2009).

    Article  Google Scholar 

  46. V. L. Indenbom, JETP Lett. 12, 369 (1970).

    ADS  Google Scholar 

  47. I. C. Choi, Y. J. Kim, B. Ahn, M. Kawasaki, T. G. Langdon, and J. I. Jang, Scripta Mater. 75, 102 (2014).

    Article  Google Scholar 

  48. Yu. I. Golovin, S. N. Dub, V. I. Ivolgin, V. V. Korenkov, and A. I. Tyurin, Phys. Solid State 47, 995 (2005).

    Article  ADS  Google Scholar 

  49. Yu. I. Golovin, V. I. Ivolgin, V. V. Korenkov, and A. I. Tyurin, Tech. Phys. Lett. 23, 621 (1997).

    Article  ADS  Google Scholar 

  50. Yu. I. Golovin and A. I. Tyurin, Izv. Akad. Nauk, Ser. Fiz. 59, 49 (1995).

    Google Scholar 

  51. Yu. I. Golovin and A. I. Tyurin, Phys. Solid State 38, 1000 (1996).

    ADS  Google Scholar 

  52. Yu. I. Golovin and A. I. Tyurin, Crystallogr. Rep. 40, 818 (1995).

    ADS  Google Scholar 

  53. S. N. Zhurkov and B. N. Narzullaev, Zh. Tekh. Fiz. 23, 1677 (1953).

    Google Scholar 

  54. S. N. Zhurkov, Int. J. Fract. Mech. 1, 311 (1965).

    Google Scholar 

  55. V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, The Kinetic Nature of the Strength of Solids (Fizmatlit, Moscow, 1974) [in Russian].

    Google Scholar 

  56. V. L. Indenbom, in Thermally Activated Processes (Mir, Moscow, 1973), p. 5 [in Russian].

    Google Scholar 

  57. V. L. Indenbom, A. N. Orlov, and Yu. Z. Estrin, in Elementary Processes of Plastic Crystal Deformation (Naukova Dumka, Kiev, 1978), p. 93 [in Russian].

    Google Scholar 

  58. V. L. Hilarov, Phys. Solid State 47, 832 (2005).

    Article  ADS  Google Scholar 

  59. H. Conrad, Nanotechnology 18, 325701 (2007).

    Article  Google Scholar 

  60. L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607 (2009).

    Article  ADS  Google Scholar 

  61. H. Somekawa, A. Singh, and C. A. Schuh, J. Alloys Compd. 685, 1016 (2016).

    Article  Google Scholar 

  62. H. Somekawa and C. A. Schuh, Acta Mater. 59, 7554 (2011).

    Article  Google Scholar 

  63. J. K. Mason, A. C. Lund, and C. A. Schuh, Phys. Rev. B 73, 054102 (2006).

    Article  ADS  Google Scholar 

  64. C. A. Schuh, J. K. Mason, and A. C. Lund, Nat. Mater. 4, 617 (2005).

    Article  ADS  Google Scholar 

  65. M. Sakai, Acta Metal. Mater. 41, 1751 (1993).

    Article  Google Scholar 

  66. M. T. Attaf, Mater. Lett. 57, 4684 (2003).

    Article  Google Scholar 

  67. O. Uzun, N. Güçlü, U. Kölemen, and O. Şahin, Mater. Chem. Phys. 112, 5 (2008).

    Article  Google Scholar 

  68. H. Conrad, Mater. Sci. Eng. A 341, 216 (2003).

    Article  Google Scholar 

  69. H. J. Frost and M. F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon, Oxford, 1982).

    Google Scholar 

  70. S. V. Eremeev, L. Yu. Nemirovich-Danchenko, and S. E. Kul’kova, Phys. Solid State 50, 543 (2008).

    Article  ADS  Google Scholar 

  71. J. Carrasco, N. Lopez, and F. Illas, Phys. Rev. Lett. 93, 225502 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Additional information

Original Russian Text © Yu.I. Golovin, A.I. Tyurin, E.G. Aslanyan, T.S. Pirozhkova, V.M. Vasyukov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 9, pp. 1778–1786.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Tyurin, A.I., Aslanyan, E.G. et al. The physical and mechanical properties and local deformation micromechanisms in materials with different dependence of hardness on the depth of print. Phys. Solid State 59, 1803–1811 (2017). https://doi.org/10.1134/S1063783417090104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417090104

Navigation