Skip to main content
Log in

An experimental and theoretical study of Ni impurity centers in Ba0.8Sr0.2TiO3

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The local environment and the charge state of a nickel impurity in cubic Ba0.8Sr0.2TiO3 are studied by XAFS spectroscopy. According to the XANES data, the mean Ni charge state is ~2.5+. An analysis of the EXAFS spectra and their comparison with the results of first-principle calculations of the defect geometry suggest that Ni2+ ions are in a high-spin state at the B sites of the perovskite structure and the difference of charges of Ni2+ and Ti4+ is mainly compensated by distant oxygen vacancies. In addition, a considerable amount of nickel in the sample is in a second phase BaNiO3 − δ. The measurements of the lattice parameter show a decrease in the unit cell volume upon doping, which can indicate the existence of a small amount of Ni4+ ions at the B site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Sturman and V. M. Fridkin, Photogalvanic Effect in Media without Symmetry Center and Related Phenomena (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  2. A. M. Glass, D. von der Linde, and T. J. Negran, Appl. Phys. Lett. 25, 233 (1974).

    Article  ADS  Google Scholar 

  3. M. Qin, K. Yao, and Y. C. Liang, Appl. Phys. Lett. 93, 122904 (2008).

    Article  ADS  Google Scholar 

  4. M. Alexe and D. Hesse, Nat. Commun. 2, 256 (2011).

    Article  ADS  Google Scholar 

  5. G. Blasse, P. H. M. de Korte, and A. Mackor, J. Inorg. Nucl. Chem. 43, 1499 (1981).

    Article  Google Scholar 

  6. J. W. Bennett, I. Grinberg, and A. M. Rappe, J. Am. Chem. Soc. 130, 17409 (2008).

    Article  Google Scholar 

  7. G. Y. Gou, J. W. Bennett, H. Takenaka, and A. M. Rappe, Phys. Rev. B 83, 205115 (2011).

    Article  ADS  Google Scholar 

  8. A. I. Lebedev, I. A. Sluchinskaya, A. Erko, and V. F. Kozlovskii, JETP Lett. 89, 457 (2009).

    Article  ADS  Google Scholar 

  9. I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, Bull. Russ. Acad. Sci.: Phys. 74, 1235 (2010).

    Article  Google Scholar 

  10. I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, in Proceedings of the 19th All-Russia Conference on Ferroelectric Physics, Moscow, June, 2011, p. 116.

    Google Scholar 

  11. I. A. Sluchinskaya, A. I. Lebedev, V. F. Kozlovskii, and A. Erko, in Proceedings of the 8th National conference on X-Ray, Synchrotron Radiations, Neutrons and Electrons for Study of Nanosystems and Materials. Nano-, Bio-, Info-, Cognitive Technologies, Moscow, 2011, p. 347.

    Google Scholar 

  12. I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, J. Adv. Dielect. 3, 1350031 (2013).

    Article  Google Scholar 

  13. I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, Phys. Solid State 56, 449 (2014).

    Article  ADS  Google Scholar 

  14. R. M. Glaister and H. F. Kay, Proc. Phys. Soc. 76, 763 (1960).

    Article  ADS  Google Scholar 

  15. Y. C. Huang and W. H. Tuan, Mater. Chem. Phys. 105, 320 (2007).

    Article  Google Scholar 

  16. F. Boujelben, F. Bahri, C. Boudaya, A. Maalej, H. Khemakhem, A. Simon, and M. Maglione, J. Alloys Compd. 481, 559 (2009).

    Article  Google Scholar 

  17. S. K. Das, R. N. Mishra, and B. K. Roul, Solid State Commun. 191, 19 (2014).

    Article  ADS  Google Scholar 

  18. R. Böttcher, H. T. Langhammer, and T. Müller, J. Phys.: Condens. Matter 23, 115903 (2011).

    ADS  Google Scholar 

  19. E. Duverger, B. Jannot, M. Maglione, and M. Jannin, Solid State Ion. 73, 139 (1994).

    Article  Google Scholar 

  20. Y. C. Huang and W. H. Tuan, J. Electroceram. 18, 183 (2007).

    Article  Google Scholar 

  21. J. Q. Huang, P. Y. Du, W. J. Weng, and G. R. Han, J. Electroceram. 21, 394 (2008).

    Article  Google Scholar 

  22. Y. Kumar, Md A. Mohiddon, A. Srivastava, and K. L. Yadav, Ind. J. Eng. Mater. Sci. 16, 390 (2009).

    Google Scholar 

  23. Th. W. Kool, S. Lenjer, and O. F. Schirmer, J. Phys.: Condens. Matter 19, 496214 (2007).

    Google Scholar 

  24. S. Lenjer, R. Scharfschwerdt, Th. W. Kool, and O. F. Schirmer, Solid State Commun. 116, 133 (2000).

    Article  ADS  Google Scholar 

  25. A. I. Lebedev and I. A. Sluchinskaya, Bull. Russ. Acad. Sci.: Phys. 80, 1068 (2016).

    Article  Google Scholar 

  26. A. I. Lebedev and I. A. Sluchinskaya, Ferroelectrics 501, 1 (2016).

    Article  Google Scholar 

  27. H. T. Langhammer, T. Müller, T. Walther, R. Böttcher, D. Hesse, E. Pippel, and S. G. Ebbinghaus, J. Mater. Sci. 51, 10429 (2016).

    Article  ADS  Google Scholar 

  28. S. Geprägs, A. Brandlmaier, M. Opel, R. Gross, and S. T. B. Goennenwein, Appl. Phys. Lett. 96, 142509 (2010).

    Article  ADS  Google Scholar 

  29. C. Pecharroman, F. Esteban-Betegon, J. F. Bartolome, S. Lopez-Esteban, and J. S. Moya, Adv. Mater. 13, 1541 (2001).

    Article  Google Scholar 

  30. W. H. Tuan and S. S. Chen, Ferroelectrics 381, 167 (2009).

    Article  Google Scholar 

  31. IFEFFIT Project. http://cars9.uchicago.edu/ifeffit/.

  32. FEFF Project. http://leonardo.phys.washington.edu/feff/.

  33. K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, Comput. Mater. Sci. 81, 446 (2014).

    Article  Google Scholar 

  34. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).

    ADS  Google Scholar 

  35. A. V. Postnikov, A. I. Poteryaev, and G. Borstel, Ferroelectrics 206, 69 (1998).

    Article  Google Scholar 

  36. M. McQuarrie, J. Am. Ceram. Soc. 38, 444 (1955).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Sluchinskaya.

Additional information

Original Russian Text © I.A. Sluchinskaya, A.I. Lebedev, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 8, pp. 1490–1497.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sluchinskaya, I.A., Lebedev, A.I. An experimental and theoretical study of Ni impurity centers in Ba0.8Sr0.2TiO3 . Phys. Solid State 59, 1512–1519 (2017). https://doi.org/10.1134/S106378341708025X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341708025X

Navigation