Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The effect of thermal treatment on the atomic structure of core–shell PtCu nanoparticles in PtCu/C electrocatalysts

  • 46 Accesses

  • 3 Citations

Abstract

PtCu/C electrocatalysts with bimetallic PtCu nanoparticles were synthesized by successive chemical reduction of Cu2+ and Pt(IV) in a carbon suspension prepared based on an aqueous ethylene glycol solution. The atomic structure of as-prepared PtCu nanoparticles and nanoparticles subjected to thermal treatment at 350°C was examined using PtL 3 and CuK EXAFS spectra, transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). The results of joint analysis of TEM microphotographs, XRD profiles, and EXAFS spectra suggest that the synthesized electrocatalysts contain PtCu nanoparticles with a Cu core–Pt shell structure and copper oxides Cu2O and CuO. Thermal treatment of electrocatalysts at 350°C results in partial reduction of copper oxides and fusion of bimetallic nanoparticles with the formation of both homogeneous and ordered PtCu solid solutions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. R. C. Salgado, E. Antolini, and E. R. Gonzalez, J. Power Sources 141, 13 (2005).

  2. 2.

    V. V. Pryadchenko, V. V. Srabionyan, E. B. Mikheykina, L. A. Avakyan, V. Y. Murzin, Y. V. Zubavichus, I. Zizak, V. E. Guterman, and L. A. Bugaev, J. Phys. Chem. C 119, 3217 (2015).

  3. 3.

    V. V. Pryadchenko, V. V. Srabionyan, A. A. Kurzin, N. V. Bulat, D. B. Shemet, L. A. Avakyan, S. V. Belenov, V. A. Volochaev, I. Zizak, V. E. Guterman, and L. A. Bugaev, Appl. Catal. A 525, 226 (2016).

  4. 4.

    V. V. Srabionyan, V. V. Pryadchenko, A. A. Kurzin, S. V. Belenov, L. A. Avakyan, V. E. Guterman, and L. A. Bugaev, Phys. Solid State 58, 752 (2016).

  5. 5.

    V. E. Guterman, S. V. Belenov, A. Y. Pakharev, M. Min, N. Y. Tabachkova, E. B. Mikheykina, L. L. Vysochina, and T. A. Lastovina, Int. J. Hydrogen Energy 41, 1609 (2016).

  6. 6.

    C. W. B. Bezerra, L. Zhang, H. Liu, K. Lee, A. L. B. Marques, E. P. Marques, H. Wang, and J. Zhang, J. Power Sources 173, 891 (2007).

  7. 7.

    L. Xiong and A. Manthiram, J. Electrochem. Soc. 152, A697 (2005).

  8. 8.

    D. L. Wang, H. L. L. Xin, R. Hovden, H. S. Wang, Y. C. Yu, D. A. Muller, F. J. DiSalvo, and H. D. Abruna, Nat. Mater. 12, 81 (2013).

  9. 9.

    A. N. Valisi, T. Maiyalagan, L. Khotseng, V. Linkov, and S. Pasupathi, Electrocatal. 3, 108 (2012).

  10. 10.

    S. V. Belenov, V. A. Volochaev, V. V. Pryadchenko, V. V. Srabionyan, D. B. Shemet, N. Yu. Tabachkova, and V. E. Guterman, Nanotechnology (2017, in press).

  11. 11.

    D. C. Koningsberger, B. L. Mojet, G. E. van Dorssen, and D. E. Ramaker, Top. Catal. 10, 143 (2000).

  12. 12.

    G. B. Sukharina, A. N. Kravtsova, A. V. Soldatov, Y. V. Zubavichus, N. A. Kryuchkova, and L. N. Mazalov, J. Phys.: Conf. Ser. 190, 12148 (2009).

  13. 13.

    G. B. Sukharina, A. V. Soldatov, O. N. Batuk, and M. A. Denecke, Nucl. Instrum. Methods Phys. Res. A 603, 125 (2009).

  14. 14.

    C. Lamberti and J. A. van Bokhoven, in X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications, Ed. by J. A. van Bokhoven and C. Lamberti (Wiley, Chichester, 2016), p. 351.

  15. 15.

    S. A. Kirakosyan, A. A. Alekseenko, V. E. Guterman, V. A. Volochaev, and N. Yu. Tabachkova, Nanotechnol. Russ. 11, 287 (2016).

  16. 16.

    M. Oezaslan, F. Hasché, and P. Strasser, J. Electrochem. Soc. 159, B444 (2012).

  17. 17.

    X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications, Ed. by J. A. van Bokhoven and C. Lamberti (Wiley, Chichester, 2016).

  18. 18.

    M. Newville, J. Synchrotr. Rad. 8, 322 (2001).

  19. 19.

    B. Ravel and M. Newville, J. Synchrotr. Rad. 12, 537 (2005).

  20. 20.

    V. V. Srabionyan, A. L. Bugaev, V. V. Pryadchenko, L. A. Avakyan, J. A. van Bokhoven, and L. A. Bugaev, J. Phys. Chem. Solids 75, 470 (2014).

  21. 21.

    S. Åsbrink and L. J. Norrby, Acta Crystallogr. B 26, 8 (1970).

  22. 22.

    M. Heinz, V. V. Srabionyan, A. L. Bugaev, V. V. Pryadchenko, E. V. Ishenko, L. A. Avakyan, Y. V. Zubavichus, J. Ihlemann, J. Meinertz, E. Pippel, M. Dubiel, and L. A. Bugaev, J. Alloys Compd. 681, 307 (2016).

  23. 23.

    V. V. Srabionyan, A. L. Bugaev, V. V. Pryadchenko, A. V. Makhiboroda, E. B. Rusakova, L. A. Avakyan, R. Schneider, M. Dubiel, and L. A. Bugaev, J. Non.- Cryst. Solids 382, 24 (2013).

  24. 24.

    S. Y. Lee, N. Mettlach, N. Nguyen, Y. M. Sun, and J. M. White, Appl. Surf. Sci. 206, 102 (2003).

  25. 25.

    K. W. Jacobsen, P. Stoltze, and J. K. Norskov, Surf. Sci. 366, 394 (1996).

  26. 26.

    C. G. Broyden, Math. Comput. 24, 365 (1970).

  27. 27.

    D. Goldfarb, Math. Comp. 24, 23 (1970).

  28. 28.

    D. F. Shanno and P. C. Kettler, Math. Comp. 24, 657 (1970).

  29. 29.

    T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide (Springer, New York, 2010).

  30. 30.

    S. R. Bahn and K. W. Jacobsen, Comput. Sci. Eng. 4, 56 (2002).

  31. 31.

    C. Kittel and P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1986).

Download references

Author information

Correspondence to V. V. Pryadchenko.

Additional information

Original Russian Text © V.V. Pryadchenko, S.V. Belenov, D.B. Shemet, V.A. Volochaev, V.V. Srabionyan, L.A. Avakyan, N.Yu. Tabachkova, V.E. Guterman, L.A. Bugaev, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 8, pp. 1642–1649.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pryadchenko, V.V., Belenov, S.V., Shemet, D.B. et al. The effect of thermal treatment on the atomic structure of core–shell PtCu nanoparticles in PtCu/C electrocatalysts. Phys. Solid State 59, 1666–1673 (2017). https://doi.org/10.1134/S1063783417080200

Download citation