Skip to main content
Log in

The role of electron–electron repulsion in the problem of epitaxial graphene on a metal: Simple estimates

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

For single-layer graphene placed on a metal substrate, the influence of intra- and interatomic Coulomb repulsion of electrons (U and G, respectively) on its phase diagram is considered in the framework of an extended Hartree-Fock theory. The general solution of the problem is presented, on the basis of which special cases allowing for analytical consideration are analyzed: free and epitaxial graphene with and without regard for the energy of the electron transition between neighboring atoms of graphene. Three regions of the phase diagram are considered: spin and charge density waves (SDW and CDW, respectively) and the semimetal (SM) state uniform in the spin and charge. The main attention is paid to undoped graphene. It is shown that the allowance for the interaction with a metal substrate expands the SM existence domain. However, in all the considered cases, the boundary between the SDW and CDW states is described by the equation U = zG, where z = 3 is the number of nearest neighbors in graphene. The widening of the SM state region also results from the doping of graphene, and the effect is independent of the sign of free carriers introduced into epitaxial graphene by the substrate. According to estimates made, the only state possible in the buffer layer is the metal-type SM state, whereas, in epitaxial graphene, the CDW state is possible. The influence of temperature on the phase diagram of epitaxial graphene is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  2. V. N. Kotov, B. Uchoa, V. M. Pereira, A. H. Castro Neto, and F. Guinea, Rev. Mod. Phys. 84, 1067 (2012).

    Article  ADS  Google Scholar 

  3. N. Swain and P. Majumdar, arXive: 1610.00695.

  4. M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, and M. I. Polikarpov, Phys. Rev. Lett. 111, 056801 (2013).

    Article  ADS  Google Scholar 

  5. L. Wang, P. Corboz, and M. Troyer, New J. Phys. 16, 103008 (2014).

    Article  ADS  Google Scholar 

  6. M. Hohenadler, F. P. Toldin, I. F. Herbut, and F. F. Assaad, Phys. Rev. B 90, 085146 (2014).

    Article  ADS  Google Scholar 

  7. W. Wu and A.-M. S. Tremblay, Phys. Rev. B 89, 205128 (2014).

    Article  ADS  Google Scholar 

  8. L. Classen, I. F. Herbut, L. Janssen, and M. M. Scherer, Phys. Rev. B 92, 035429 (2015).

    Article  ADS  Google Scholar 

  9. S. Yu. Davydov, Sov. Phys. Solid State 20, 1013 (1978).

    Google Scholar 

  10. S. Yu. Davydov, Semiconductors 48, 46 (2014).

    Article  ADS  Google Scholar 

  11. S. Yu. Davydov, Adsorption Theory: Method of Model Hamiltonians (SPbGETU LETI, and St. Petersburg, 2013) [in Russian].

    Google Scholar 

  12. S. Yu. Davydov, Sov. Phys. Solid State 21, 1314 (1979).

    Google Scholar 

  13. D. I. Khomskii, Fiz. Met. Metalloved. 29, 31 (1970).

    Google Scholar 

  14. E. V. Kuz’min, G. A. Petrakovskii, and E. A. Zavadskii, Physics of Magnetically Ordered Materials (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  15. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).

    Book  Google Scholar 

  16. S. Yu. Davydov, Semiconductors 46, 193 (2012).

    Article  ADS  Google Scholar 

  17. S. Yu. Davydov, Phys. Solid State 58, 804 (2016).

    Article  ADS  Google Scholar 

  18. J. E. Hirsh, Phys. Rev. Lett. B 53, 2327 (1984).

    Article  ADS  Google Scholar 

  19. V. Zhang and J. Callaway, Phys. Rev. B 39, 9397 (1989).

    Article  ADS  Google Scholar 

  20. J. van den Brink, M. B. J. Meinders, J. Lorenzana, R. Eder, and G. A. Sawatzky, Phys. Rev. Lett. 75, 4658 (1995).

    Article  ADS  Google Scholar 

  21. P. Sengupta, A. W. Sandvik, and D. K. Campbell, Phys. Rev. B 65, 155113 (2002).

    Article  ADS  Google Scholar 

  22. T. O. Wehling, E. Şaşιoğlu, C. Friedrich, A. I. Lichtenstein, and M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805 (2011).

    Article  ADS  Google Scholar 

  23. Ch. Kittel, Quantum Theory of Solids (Wiley, New York, 1963, Nauka, Moscow, 1967).

    MATH  Google Scholar 

  24. S. Yu. Davydov, Semiconductors 47, 95 (2013).

    Article  ADS  Google Scholar 

  25. Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad, and A. Muramatsu, Nature 464, 847 (2010).

    Article  ADS  Google Scholar 

  26. S. Sorella, Y. Otsuka, and S. Yunoki, Sci. Rep. 2, 992 (2012).

    Article  ADS  Google Scholar 

  27. A. G. Grushin, E. V. Castro, A. Cortijo, F. de Juan, M. A. H. Vozmediano, and B. Valenzuela, Phys. Rev. B 87, 085136 (2013).

    Article  ADS  Google Scholar 

  28. X. Y. Xu, S. Wesse, and Z. Y. Meng, Phys. Rev. B 94, 116105 (2016).

    ADS  Google Scholar 

  29. W. A. Harrison, The Electronic Structure and Properties of Solids (Freeman, San Francisco, CA, 1980), Vol. 2.

    Google Scholar 

  30. Physical Values, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

  31. V. Yu. Irkhin and Yu. P. Irkhin, The Electronic Structure, Correlation Effects and Physical Properties of D- and F-Metals and Their Compounds (Regulyar. Khaotich. Dinamika, Moscow, Izhevsk, 2008, Cambridge Int., Cambridge, MA, 2007).

    MATH  Google Scholar 

  32. R. Hovdena, A. W. Tsen, P. Liua, B. H. Savitzky, I. El Baggari, Y. Liu, W. Lu, Y. Sun, P. Kim, A. N. Pasupathy, and L. F. Kourkoutis, Proc. Nat. Acad. Sci. USA 113, 11420 (2016).

    Article  ADS  Google Scholar 

  33. J. W. F. Venderbos, M. Manzardo, D. V. Efremov, J. van den Brink, and C. Ortix, Phys. Rev. B 93, 045428 (2016).

    Article  ADS  Google Scholar 

  34. S. Yu. Davydov, Tech. Phys. 61, 1106 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Additional information

Original Russian Text © S.Yu. Davydov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 8, pp. 1650–1658.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. The role of electron–electron repulsion in the problem of epitaxial graphene on a metal: Simple estimates. Phys. Solid State 59, 1674–1682 (2017). https://doi.org/10.1134/S1063783417080078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417080078

Navigation