Skip to main content
Log in

Changes in the diffusion properties of nonequilibrium grain boundaries upon recrystallization and superplastic deformation of submicrocrystalline metals and alloys

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of an increase in the coefficient of the grain-boundary diffusion upon recrystallization and superplastic deformation of submicrocrystalline (SMC) materials prepared by severe plastic deformation has been studied. It is shown that the coefficient of the grain-boundary diffusion of the SMC materials is dependent on the intensity of the lattice dislocation flow whose value is proportional to the rate of the grain boundary migration upon annealing of SMC metals or the rate of the intragrain deformation under conditions of superplastic deformation of SMC alloys. It is found that, at a high rate of grain boundary migrations and high rates of superplastic deformation, the intensity of the lattice dislocation flow bombarding grain boundaries of SMC materials is higher than the intensity of their diffusion accommodation, which leads to an increase in the coefficient of the grain-boundary diffusion and a decrease in the activation energy. The results of the numerical calculations agree well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, and V. I. Kopylov, Fundamentals and Engineering of Severe Plastic Deformation (Nova Science, New York, 2010).

    Google Scholar 

  2. V. N. Chuvil’deev, O. E. Pirozhnikova, and A. V. Petryaev, Phys. Met. Metallogr. 92, 540 (2001).

    Google Scholar 

  3. V. N. Chuvil’deev, Nonequilibrium Grain Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  4. S. V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, and G. Wilde, Acta Mater. 59, 1974 (2011).

    Article  Google Scholar 

  5. S. V. Divinski, G. Reglitz, I. S. Golovin, M. Peterlechner, R. Lapovok, Y. Estrin, and G. Wilde, Acta Mater. 82, 11 (2015).

    Article  Google Scholar 

  6. C. Y. Yu, P. L. Sun, P. W. Kao, and C. P. Chang, Mater. Sci. Eng. A 366, 310 (2004).

    Article  Google Scholar 

  7. H.-K. Kim, J. Mater. Sci. 39, 7107 (2004).

    Article  ADS  Google Scholar 

  8. J. Stráská, M. Janeček, J. Čižek, J. Stráský, and B. Hadzima, Mater. Charact. 94, 69 (2014).

    Article  Google Scholar 

  9. X. Molodova, G. Gottstein, M. Winning, and R. J. Hellmig, Mater. Sci. Eng. A 460–461, 204 (2007).

    Article  Google Scholar 

  10. V. N. Chuvil’deev, T. G. Nieh, M. Yu. Gryaznov, A. N. Sysoev, and V. I. Kopylov, J. Alloys. Compd. 378, 253 (2004).

    Article  Google Scholar 

  11. R. Kapoor and J. K. Chakravartty, Acta Mater. 55, 5408 (2007).

    Article  Google Scholar 

  12. T. Fujita, Z. Horita, and T. G. Langdon, Mater. Sci. Eng. A 371, 241 (2004).

    Article  Google Scholar 

  13. S. V. Divinski, J. Ribbe, D. Baither, G. Schmitz, G. Reglitz, H. Rösner, K. Sato, Y. Estrin, and G. Widle, Acta Mater. 57, 5706 (2009).

    Article  Google Scholar 

  14. H. K. Kim and W. J. Kim, Mater. Sci. Eng. A 385, 300 (2004).

    Article  Google Scholar 

  15. Yu. R. Kolobov, G. P. Grabovetskaya, K. V. Ivanov, and N. V. Girsova, Phys. Met. Metallogr. 91, 532 (2001).

    Google Scholar 

  16. V. N. Chuvil’deev, V. I. Kopylov, M. Yu. Gryaznov, A.N. Sysoev, B. V. Ovsyannikov, and A. A. Flyagin, Dokl. Phys. 53, 584 (2008).

    Article  ADS  Google Scholar 

  17. H. B. Geng, S. B. Kang, and B. K. Min, Mater. Sci. Eng. A 373, 229 (2004).

    Article  Google Scholar 

  18. M. Yu. Gryaznov, A. N. Sysoev, and V. N. Chuvil’deev, Phys. Met. Metallogr. 87, 163 (1999).

    Google Scholar 

  19. I. S. Golovin, Phys. Met. Metallogr. 110, 405 (2010).

    Article  ADS  Google Scholar 

  20. D. Prokoshkina, L. Klinger, A. Moros, G. Wilde, E. Rabkin, and S. V. Divinski, Acta Mater. 69, 314 (2014).

    Article  Google Scholar 

  21. V. N. Chuvil’deev, Phys. Met. Metallogr. 81, 463 (1996).

    Google Scholar 

  22. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon, Oxford, 1982).

    Google Scholar 

  23. A. R. Ubbelohde, Molten State of Matter: Melting and Crystal Structure (Wiley, New York, 1978).

    Google Scholar 

  24. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISiS, Moscow, 2005) [in Russian].

    Google Scholar 

  25. A. V. Piskunov, V. N. Chuvil’deev, and Yu. G. Lopatin, in Proceedings of the 5th All-Russia Conference of Students and Young Scientists VNKSF-15, Yekaterinburg, Kemerovo, March 26–Apr. 2, 2009, p. 759.

    Google Scholar 

  26. T. G. Nieh, D. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  27. V. N. Perevezentsev, V. V. Rybin, and V. N. Chuvil’deev, Acta Met. Mater. 40, 887 (1992).

    Article  Google Scholar 

  28. T. G. Langdon, J. Mater. Sci. 44, 5998 (2009).

    Article  ADS  Google Scholar 

  29. V. N. Chuvil’deev and A. V. Petryaev, Phys. Met. Metallogr. 89, 122 (2000).

    Google Scholar 

  30. M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T. G. Langdon, Acta Mater. 49, 3829 (2001).

    Article  Google Scholar 

  31. F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, Scripta Mater. 50, 511 (2004).

    Article  Google Scholar 

  32. S. V. Zemskii, N. E. Fomin, and G. K. Mal’tseva, Fiz. Khim. Obrab. Mater. 4, 91 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nokhrin.

Additional information

Original Russian Text © V.N. Chuvil’deev, A.V. Nokhrin, O.E. Pirozhnikova, M.Yu. Gryaznov, Yu.G. Lopatin, M.M. Myshlyaev, V.I. Kopylov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 8, pp. 1561–1569.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvil’deev, V.N., Nokhrin, A.V., Pirozhnikova, O.E. et al. Changes in the diffusion properties of nonequilibrium grain boundaries upon recrystallization and superplastic deformation of submicrocrystalline metals and alloys. Phys. Solid State 59, 1584–1593 (2017). https://doi.org/10.1134/S1063783417080066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417080066

Navigation