Advertisement

Physics of the Solid State

, Volume 59, Issue 7, pp 1291–1297 | Cite as

Anisotropy of the magnetoresistive properties of granular high-temperature superconductors resulting from magnetic flux compression in the intergrain medium

  • S. V. SemenovEmail author
  • D. A. Balaev
  • M. A. Pochekutov
  • D. A. Velikanov
Superconductivity

Abstract

To elucidate the origin of the well-known anisotropy of the magnetoresistive properties of granular high-temperature superconductors (HTSs), which is related to the mutual orientation of magnetic field H and transport current j, we investigate the hysteretic dependences of magnetoresistance R(H) of the yttrium HTS sample at the perpendicular (Hj) and parallel (H || j) configurations. The hysteretic R(H) dependences are analyzed using the concept of the effective field in the intergrain boundaries through which superconducting current carriers tunnel. The effective degree of magnetic flux compression in the intergrain medium at the perpendicular configuration was found to be twice as much as at the parallel one. This approach explains well the anisotropy of the magnetoresistive properties of granular HTSs, which was previously reported by many authors, and the temperature dependences of the resistance in the resistive transition region.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Lopez and F. de la Cruz, Phys. Rev. B 43, 11478 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    D. Lopez and R. Decca, and F. de la Cruz, Solid State Commun. 79, 959 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    D. Lopez and R. Decca, and F. de la Cruz, Supercond. Sci. Technol. 5, 276 (1992).CrossRefGoogle Scholar
  4. 4.
    M. M. Asim and S. K. Hasanin, Solid State Commun. 80, 719 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    A. Kilic, K. Kilic, S. Senoussi, and K. Demir, Physica C 294, 203 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    O. V. Gerashchenko and S. L. Ginzburg, Supercond. Sci. Technol. 13, 332 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    D. Daghero, P. Mazzetti, A. Stepanescu, and P. Tura, Phys. Rev. B 66, 11478 (2002).CrossRefGoogle Scholar
  8. 8.
    A. A. Sukhanov and V. I. Omelchenko, J. Low Temp. Phys. 29, 297 (2003).CrossRefGoogle Scholar
  9. 9.
    D. A. Balaev, A. G. Prus, K. A. Shaikhutdinov, and M. I. Petrov, Tech. Phys. Lett. 32, 677 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    D. A. Balaev, A. G. Prus, K. A. Shaukhutdinov, D. M. Gokhfeld, and M. I. Petrov, Supercond. Sci. Technol. 20, 495 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 46, 1798 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 49, 1829 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    T. V. Sukhareva and V. A. Finkel’, Phys. Solid State 50, 1001 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (1965).ADSCrossRefGoogle Scholar
  15. 15.
    W. K. Kwok, U. Welp, G. W. Crabtree, K. G. Vandervoot, R. Hulscher, and J. Z. Liu, Phys. Rev. Lett. 64, 966 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    D. A. Balaev, S. I. Popkov, E. I. Sabitova, S. V. Semenov, K. A. Shaykhutdinov, A. V. Shabanov, and M. I. Petrov, J. Appl. Phys. 110, 093918 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    D. A. Balaev, S. V. Semenov, and M. I. Petrov, Phys. Solid State 55, 2422 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    D. A. Balaev, S. V. Semenov, and M. I. Petrov, J. Supercond. Novel. Magn. 27, 1425 (2014).CrossRefGoogle Scholar
  19. 19.
    D. A. Balaev, S. I. Popkov, K. A. Shaikhutdinov, M. I. Petrov, and D. M. Gokhfeld, Phys. Solid State 56, 1542 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    D. A. Velikanov, RF Patent No. 2339965, Byull. Izobret. No. 33 (2008).Google Scholar
  21. 21.
    D. M. Gokhfeld, Phys. Solid State 56, 2380 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    D. A. Balaev, D. M. Gokhfeld, A. A. Dubrovski, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, J. Exp. Theor. Phys. 105, 1174 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    D. A. Balaev, A. A. Dubrovskii, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfeld, Yu. S. Gokhfeld, and M. I. Petrov, J. Exp. Theor. Phys. 108, 241 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, D. M. Gokhfeld, S. V. Semenov, K. A. Shaykhutdinov, and M. I. Petrov, Phys. Solid State 54, 2155 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel’, and Yu. N. Shakhov, Phys. Solid State 56, 649 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    D. A. Balaev, A. A. Bykov, S. V. Semenov, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 53, 922 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Semenov
    • 1
    • 2
    Email author
  • D. A. Balaev
    • 1
    • 2
  • M. A. Pochekutov
    • 1
    • 2
  • D. A. Velikanov
    • 1
  1. 1.Kirensky Institute of PhysicsFederal Research Center KSC SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations