Skip to main content
Log in

Ab initio simulation of dissolution energy and carbon activity in fcc Fe

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The equilibrium structure and properties of fcc iron with a carbon impurity were simulated ab initio using the WIEN2k software package. A procedure is proposed that enables the simulation of the magnetically disordered state of a system within the density functional theory. In the framework of this procedure, the value of the dissolution energy of carbon was calculated, which was 0.25 eV. Interaction energies between carbon atoms in the first, second, and third coordination spheres of each other were also determined, which were E 1 = 0.06 eV, E 2 = 0.1 eV, and E 3 = 0.005 eV. To verify the reliability of the obtained energy values, the activity of carbon was calculated by the Monte Carlo method. A good qualitative agreement of the calculated activity with the experimental data indicates the reliability of the obtained energy parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-Ray Spectroscopy and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  2. G. V. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  3. B. M. Mogutnov, N. A. Tomilin, and L. A. Shvartsman, Thermodynamics of Iron Alloys (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  4. R. B. Mclellan, Acta Metall. 35, 2151 (1987).

    Article  Google Scholar 

  5. M. S. Blanter, J. Alloys Compd. 291, 167 (1999).

    Article  Google Scholar 

  6. A. L. Sozinov, A. G. Balanyuk, and V. G. Gavriljuk, Acta Mater. 45, 225 (1997).

    Article  Google Scholar 

  7. A. G. Balanyuk, V. N. Bugaev, V. M. Nadutov, and A. L. Sozinov, Phys. Status Solidi B 207, 3 (1998).

    Article  ADS  Google Scholar 

  8. A. V. Ponomareva, Yu. N. Gornostyrev, and I. A. Abrikosov, J. Exp. Theor. Phys. 120, 716 (2015).

  9. D. E. Jiang and E. A. Carter, Phys. Rev. B 67, 214103 (2003).

    Article  ADS  Google Scholar 

  10. D. J. Hepburn, D. Ferguson, S. Gardner, and G. J. Ackland, Phys. Rev. B 88, 024115 (2013).

    Article  ADS  Google Scholar 

  11. C. Domain, C. S. Becquart, and J. Foct, Phys. Rev. B 69, 144112 (2004).

    Article  ADS  Google Scholar 

  12. P. Gustafson, Scand. J. Met. 14, 259 (1985).

    Google Scholar 

  13. B. M. Mogutnov, I. A. Tomilin, and L. A. Shvartsman, Thermodynamics of Iron Alloys (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  14. A. Lobo and G. H. Geiger, Metal. Trans. A 7, 1359 (1976).

    Article  Google Scholar 

  15. G. J. Shiflet, J. R. Bradley, and H. I. Aaronson, Metal. Trans. A 15, 1287 (1984).

    Article  Google Scholar 

  16. J. Chipman, Metal. Trans. 3, 55 (1972).

    Article  Google Scholar 

  17. J. A. Slane, C. Wolverton, and R. Gibala, Met. Mater. Trans. A 35, 2239 (2004).

    Article  Google Scholar 

  18. N. I. Medvedeva, M. S. Park, D. C. V. Aken, and J. E. Medvedeva, J. Alloys Compd. 582, 475 (2014).

    Article  Google Scholar 

  19. M. Acet, H. Zahres, E. F. Wassermann, and W. Pepperhoff, Phys. Rev. B 49, 6012 (1994).

    Article  ADS  Google Scholar 

  20. D. W. Boukhvalov, Y. N. Gornostyrev, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. Lett. 99, 247205 (2007).

    Article  ADS  Google Scholar 

  21. N. I. Medvedeva, D. V. Aken, and J. E. Medvedeva, J. Phys.: Condens. Matter. 22, 316002 (2010).

    Google Scholar 

  22. H. C. Herper, E. Hoffmann, and P. Entel, Phys. Rev. B 60, 3839 (1999).

    Article  ADS  Google Scholar 

  23. B. Alling, T. Marten, and I. A. Abrikosov, Phys. Rev. B 82, 184430 (2010).

    Article  ADS  Google Scholar 

  24. S. Cottenier, Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction (2004). http://www.wien2k.at/reg_user/textbooks.

    Google Scholar 

  25. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  26. Ya. M. Ridnyi, A. A. Mirzoev, and D. A. Mirzaev, Vestn. Yuzh. Ural. Univ., Ser. Mat. Mekh. Fiz. 5 (2), 108 (2013).

    Google Scholar 

  27. M. Onink, C. M. Brakman, F. D. Tichelaar, E. J. Mittemeijer, S. van der Zwaag, J. H. Root, and N. B. Konyer, Scripta Met. Mater. 29, 1011 (1993).

    Article  Google Scholar 

  28. R. Z. Deyanov, N. N. Eremin, and V. S. Urusov, Ordered–Disordered–Solid–Solution (ODSS), Ver. 1: Binary (Moscow, 2006–2007).

    Google Scholar 

  29. Ya. M. Ridnyi, A. A. Mirzoev, and D. A. Mirzaev, Vestn. Yuzh. Ural. Univ., Ser. Mat. Mekh. Fiz. 6 (3), 86 (2014).

    Google Scholar 

  30. E. Murch and R. J. Thorn, Acta Metal. 27, 201 (1979).

    Article  Google Scholar 

  31. S. Ban-ya, J. F. Elliott, and J. Chipman, Metal. Trans. 1, 1313 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. M. Ridnyi.

Additional information

Original Russian Text © Ya.M. Ridnyi, A.A. Mirzoev, D.A. Mirzaev, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 7, pp. 1255–1260.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridnyi, Y.M., Mirzoev, A.A. & Mirzaev, D.A. Ab initio simulation of dissolution energy and carbon activity in fcc Fe. Phys. Solid State 59, 1279–1284 (2017). https://doi.org/10.1134/S1063783417070204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417070204

Navigation