Skip to main content
Log in

Magnetically controlled thermoelastic martensite transformations and properties of a fine-grained Ni54Mn21Ga25 alloy

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Comparative studies of physical characteristics (the electrical resistivity, the magnetic susceptibility, the magnetization, the bending deformation, and the degree of shape recovery during subsequent heating) of the Ni54Mn21Ga25 ferromagnetic alloy as-cast and rapidly quenched from melt have been performed in the temperature range 2–400 K. The results are compared to the results of studying the structural–phase transformations by transmission and scanning electron microscopy and X-ray diffraction. It is found that the rapid quenching influences the microstructure, the magnetic state, the critical temperatures, and the specific features of thermoelastic martensite transformations in the alloy. It is found that the resource of the alloy plasticity and thermomechanical bending cyclic stability demonstrates a record-breaking increase in the intercritical temperature range and during subsequent heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Kondrat’ev and V. G. Pushin, Fiz. Met. Metalloved. 60, 629 (1985).

    Google Scholar 

  2. V. G. Pushin and V. V. Kondrat’ev, Fiz. Met. Metalloved. 78, 40 (1994).

    Google Scholar 

  3. V. G. Pushin. Phys. Met. Metallogr. 90 (Suppl. 1), 68 (2000).

  4. A. N. Vasil’ev, V. D. Buchel’nikov, T. Tagaki, V. V. Khovailo, and E. I. Estrin, Phys. Usp. 46, 557 (2003).

    Article  ADS  Google Scholar 

  5. V. N. Khachin, S. A. Muslov, V. G. Pushin, and Yu. I. Chumlyakov, Sov. Phys. Dokl. 32, 606 (1987).

    ADS  Google Scholar 

  6. A. Zheludev, S. M. Shapiro, P. Wochner, and L. E. Tanner, Phys. Rev. B 54, 15045 (1996).

    Article  ADS  Google Scholar 

  7. L. Mano a, A. Planes, J. Zarestky, T. Lograsso, D. L. Schlagel, and C. Stassis, Phys. Rev. B 64, 024305 (2001).

    Article  ADS  Google Scholar 

  8. J. Worgull, E. Petti, and J. Trivisonno, Phys. Rev. B 54, 15695 (1996).

    Article  ADS  Google Scholar 

  9. P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Philos. Mag. B 49, 295 (1984).

    Article  ADS  Google Scholar 

  10. V. A. Chernenko, C. Segui, E. Cesari, J. Pons, and V. V. Kokorin, J. Phys. IV (Fr.) 7, C5–137 (1997).

    Google Scholar 

  11. J. Pons, V. A. Chernenko, R. Santa Marta, and E. Cesari, Acta Mater. 48, 3027 (2000).

    Article  Google Scholar 

  12. N. Lanska, O. Soderberg, A. Sozinov, Y. Ge, K. Ullakko, and V. K. Lindroos, J. Appl. Phys. 95, 8074 (2004).

  13. V. V. Kokorin and V. V. Martynov, Fiz. Met. Metalloved. 72, 101 (1991).

    Google Scholar 

  14. M. Kreissl, K.-U. Neumann, T. Tephens, and K. R. A. Ziebeck, J. Phys.: Condens. Matter 15, 3831 (2003).

    ADS  Google Scholar 

  15. N. I. Kourov, A. V. Korolev, V. G. Pushin, V. V. Koledov, V. G. Shavrov, and V. V. Khovailo, Phys. Met. Metallogr. 99, 376 (2005).

    Google Scholar 

  16. N. I. Kourov, V. G. Pushin, A. V. Korolev, V. A. Kazantsev, E. B. Marchenkova, and A. N. Uksusnikov, Phys. Met. Metallogr. 103, 270 (2007).

    Article  ADS  Google Scholar 

  17. N. I. Kourov, V. V. Marchenkov, V. G. Pushin, A. V. Korolev, E. B. Marchenkova, and H. W. Weber, Phys. Solid State 50, 2127 (2008).

    Article  ADS  Google Scholar 

  18. N. I. Kourov, V. G. Pushin, A. V. Korolev, V. V. Marchenkov, E. B. Marchenkova, V. A. Kazantsev, and H. W. Weber, Phys. Solid State 53, 91 (2011).

    Article  ADS  Google Scholar 

  19. V. G. Pushin, N. I. Kourov, A. V. Korolev, E. B. Marchenkova, N. N. Kuranova, and E. S. Belosludtseva, Phys. Solid State 57, 45 (2015).

    Article  ADS  Google Scholar 

  20. A. V. Korolev, N. I. Kourov, and V. G. Pushin, Phys. Solid State 57, 316 (2015).

    Article  ADS  Google Scholar 

  21. Z. Wang, M. Matsumoto, S. T. Pantelides, K. Oikawa, J. Qiu, T. Takagi, and J. Tani, Mater. Sci. Forum 327–328, 489 (2000).

    Article  Google Scholar 

  22. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971), [in Russian].

    Google Scholar 

  23. F. J. Blatt, Theory of Mobility of Electrons in Solids (Academic, New York, 1957).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pushin.

Additional information

Original Russian Text © V.G. Pushin, E.B. Marchenkova, A.V. Korolev, N.I. Kourov, E.S. Belosludtseva, A.V. Pushin, A.N. Uksusnikov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 7, pp. 1297–1306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushin, V.G., Marchenkova, E.B., Korolev, A.V. et al. Magnetically controlled thermoelastic martensite transformations and properties of a fine-grained Ni54Mn21Ga25 alloy. Phys. Solid State 59, 1321–1331 (2017). https://doi.org/10.1134/S1063783417070198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417070198

Navigation