Skip to main content
Log in

Effect of cation substitution in Cs1–2x Ba x H2PO4 on structural properties and proton conductivity

  • Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We synthesized compounds with partial substitution of Cs+ cations in CsH2PO4 by Ba2+ cations. The structural, electron transport and thermodynamic properties of Cs1–2x Ba x H2PO4 (x = 0–0.15) were studied for the first time with the help of a set of physicochemical methods: infrared and impedance spectroscopy, X-ray diffraction and synchronous thermal analysis. The proton conductivity of Cs1–2x Ba x H2PO4 at 50–230°C was investigated in detail by impedance measurements. The formation of solid substitution solutions isostructural with CsH2PO4 (P21/m) is observed in the range of substitution degrees of x = 0–0.1, with a slight decrease in the unit cell parameters and some salt amorphization. The conductivity of disordered Cs1–2x Ba x H2PO4 in the low-temperature region increases by two orders of magnitude at x = 0.02 and increases with an increasing fraction of barium cations by three or four orders of magnitude at x = 0.05–0.1; the superionic phase transition practically disappears. At x = 0.15, heterophase systems based on salts are formed, showing high conductivity and a further decrease in the activation energy of conductivity to 0.63 eV. The conductivity of the high-temperature phase of Cs1–2x Ba x H2PO4 does not change with increasing fraction of the substituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Uda, D. A. Boysen, C. R. I. Chisholm, and S. M. Haile, Electrochem. Solid State Lett. A 9, 261 (2006).

    Article  Google Scholar 

  2. D. A. Boysen, T. Uda, C. R. I. Chisholm, and S. M. Haile, Science 303, 68 (2004).

    Article  ADS  Google Scholar 

  3. T. Uda and S. M. Haile, Electrochem. Solid State Lett. 8, A245 (2005).

    Article  Google Scholar 

  4. S. M. Haile, C. R. I. Chisholm, K. Sasaki, D. A. Boysen, and T. Uda, Faraday Discuss. 134, 17 (2007).

    Article  ADS  Google Scholar 

  5. C. R. I. Chisholm, D. A. Boysen, A. B. Papandrew, S. Zecevic, S. Y. Cha, K. A. Sasaki, A. Varga, K. P. Giapis, and S. M. Haile, Electrochem. Soc. Interface 18 (3), 53 (2009).

    Google Scholar 

  6. J. Otomo, N. Minagawa, C.-J. Wen, K. Eguchi, and H. Takahashi, Solid State Ionics 156, 357 (2003).

    Article  Google Scholar 

  7. A. I. Baranov, Crystallogr. Rep. 48, 1012 (2003).

    Article  ADS  Google Scholar 

  8. V. G. Ponomareva, V. V. Martsinkevich, and Yu. A. Chesalov, Russ. J. Electrochem. 47, 605 (2011).

    Article  Google Scholar 

  9. V. V. Martsinkevich and V. G. Ponomareva, Solid State Ionics 225, 236 (2012).

    Article  Google Scholar 

  10. A. Ikeda, D. A. Kitchaev, and S. M. Haile, J. Mater. Chem. A 2, 204 (2014).

    Article  Google Scholar 

  11. V. G. Ponomareva and I. N. Bagryantseva, Inorg. Mater. 48, 187 (2012).

    Article  Google Scholar 

  12. V. G. Ponomareva and E. S. Shutova, Solid State Ionics 178, 729 (2007).

    Article  Google Scholar 

  13. A. Ikeda and S. M. Haile, Solid State Ionics 213, 63 (2012).

    Article  Google Scholar 

  14. T. Matsui, T. Kukino, R. Kikuchi, and K. Eguchi, J. Electrochem. Soc. 153, A339 (2006).

    Article  Google Scholar 

  15. V. G. Ponomareva, E. S. Shutova, and G. V. Lavrova, Inorg. Mater. 44, 1009 (2008).

    Article  Google Scholar 

  16. J. D. Gilbert, P. G. Lenhert, and L. K. Wilson, Acta Crystallogr. B 33, 3533 (1977).

    Article  Google Scholar 

  17. V. M. Agre, I. A. Krol’, V. K. Trunov, and G. M. Serebrenikova, Sov. Phys. Crystallogr. 21, 408 (1976).

    Google Scholar 

  18. J. D. Gilbert and P. G. Lenhert, Acta Crystallogr. B 34, 3309 (1978).

    Article  Google Scholar 

  19. L. P. Solov’eva, S. V. Tsybulya, and V. A. Zabolotnyi, Polycrystal as a Software System for Structural Computations (IKSO RAN, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  20. Y. Uesu and J. Kobayashi, Phys. Status Solidi A 34, 475 (1976).

    Article  ADS  Google Scholar 

  21. A. West, Solid State Chemistry and its Applications (Wiley, Chichester, 1984), Vol. 1.

    Google Scholar 

  22. S. R. I. Chisholm, L. A. Cowan, S. M. Haile, and W. T. Klooster, Chem. Mater. 13, 2574 (2001).

    Article  Google Scholar 

  23. C. E. Botez, H. Martinez, R. J. Tackett, R. R. Chianelli, J. Zhang, and Y. Zhao, J. Phys.: Condens. Matter 21, 325401 (2009).

    Google Scholar 

  24. R. D. Shannon and C. T. Prewitt, Acta Cryst. 26, 925 (1969).

    Article  Google Scholar 

  25. V. Ponomareva and V. Martsinkevich, in Proceedings of the International Conference on Ion Transport in Organic and Inorganic Membranes, Krasnodar, Sochi, 2015, p. 236.

    Google Scholar 

  26. Atlace of Infrared Spectra of Phosphates. Orthophosphates, Ed. by I. V. Tananaev (Nauka, Moscow, 1981) [in Russian].

  27. B. Marchon and A. Novak, J. Chem. Phys. 78, 2105 (1983).

    Article  ADS  Google Scholar 

  28. A. K. Ivanov-Shits and I. V. Murin, Solid State Ionics (SPb. Gos. Univ., St. Petersburg, 2010), Vol. 2 [in Russian].

    Google Scholar 

  29. N. F. Uvarov, Composition Solid Electrolytes (Sib. Otdel. RAN, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  30. A. B. Yaroslavtsev, Russ. Chem. Rev. 78, 1013 (2009).

    Article  ADS  Google Scholar 

  31. V. G. Ponomareva, in Membranes and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013), p. 169 [in Russian].

  32. V. G. Ponomareva and G. V. Lavrova, J. Solid State Electrochem. 15, 213 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Ponomareva.

Additional information

Original Russian Text © V.G. Ponomareva, I.N. Bagryantseva, E.S. Shutova, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 7, pp. 1360–1367.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, V.G., Bagryantseva, I.N. & Shutova, E.S. Effect of cation substitution in Cs1–2x Ba x H2PO4 on structural properties and proton conductivity. Phys. Solid State 59, 1387–1394 (2017). https://doi.org/10.1134/S1063783417070174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417070174

Navigation