Skip to main content
Log in

Structural and magnetic–luminescent properties of carbon-doped aluminum oxide

  • Low-Dimension Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Three-phase (corundum + δ phase + amorphous phase) amorphous–nanocrystalline powders of pure and carbon-doped Al2O3 (x C = 1.07–6.6 wt %) have been produced by pulsed electron beam evaporation in vacuum. The corundum hexagonal nanocrystals in the Al2O3–C nanopowder (x C = 1.07 wt %) had sizes about 5 nm. The carbon solubility boundary in the Al2O3 lattice was lower than 1.07 wt % C. The dependence of the form of the cathode-luminescence spectra and the phase compositions of the prepared Al2O3 and Al2O3–C nanopowders has been found. The absence of R lines of Cr3+ ions in photoluminescence spectra of doped nonopowders has been detected. All the nanopowders of the pure and C-doped Al2O3 were ferromagnets at room temperature with the maximum magnetization of ~0.12 emu/g at x C = 6.6 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72, 024450 (2005).

    Article  ADS  Google Scholar 

  2. M. Wang, M. Feng, and Y. Lu, Comp. Mater. Sci. 92, 120 (2014).

    Article  Google Scholar 

  3. Z. D. Dohcevic-Mitrovic, N. Paunovic, B. Matovic, P. Osiceanu, R. Scurtu, S. Ackrabic, and M. Radovic, Ceram. Int. 41, 6970 (2015).

    Article  Google Scholar 

  4. B. Santara, K. Imakita, M. Fujii, and P. K. Giri, J. Alloys Compd. 661, 331 (2016).

    Article  Google Scholar 

  5. M. Vranješ, J. Kuljanin-Jakovljevic, Z. Konstantinovic, A. Pomar, S. P Ahrenkiel, T. Radetic, M. Stoiljkovic, M. Mitric, and Z. Šaponjic, Mater. Res. Bull. 76, 100 (2016).

    Article  Google Scholar 

  6. S. Kumar, S. Bhunia, and A. K. Ojha, Chem. Phys. Lett. 644, 271 (2016).

    Article  ADS  Google Scholar 

  7. S. Kumar and A. K. Ojha, Mater. Chem. Phys. 169, 13 (2016).

    Article  Google Scholar 

  8. N. H. Hong, C. K. Park, A. T. Raghavender, A. Ruyter, E. Chikoidze, and Y. Dumont, J. Magn. Magn. Mater. 324, 3013 (2012).

    Article  ADS  Google Scholar 

  9. Y. Xie, A. N. Zhou, Y. T. Zhang, Y. P. Huo, S. F. Wang, and J. M. Zhang, J. Magn. Magn. Mater. 389, 90 (2015).

    Article  ADS  Google Scholar 

  10. S. Yu. Sokovnin and V. G. Il’ves, Tech. Phys. Lett. 35, 1026 (2009).

    Article  ADS  Google Scholar 

  11. S. Ning, P. Zhan, Q. Xie, W. Wang, and Z. Zhang, J. Mater. Sci. Technol. 31, 969 (2015).

    Article  Google Scholar 

  12. N. Kapila, G. Sharma, I. Mudahar, and H. Sharma, J. Magn. Magn. Mater. 405, 187 (2016).

    Article  ADS  Google Scholar 

  13. S. Yu. Sokovnin, V. G. Il’ves, A. I. Medvedev, and A. M. Murzakaev, Inorg. Mater.: Appl. Res. 4, 410 (2013).

    Article  Google Scholar 

  14. G. Kopnov, Z. Vager, and R. Naaman, Adv. Mater. 19, 925 (2007).

    Article  Google Scholar 

  15. P. J. Grace, M. Venkatesan, J. Alaria, J. M. D. Coey, G. Kopnov, and R. Naaman, Adv. Mater. 21, 71 (2009).

    Article  Google Scholar 

  16. V. G. Il’ves, M. G. Zuev, and S. Yu. Sokovnin, J. Nanotechnol. 2015, 417817 (2015).

    Google Scholar 

  17. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B 74, 161306 (2006).

    Article  ADS  Google Scholar 

  18. A. Sundaresan and C. N. R. Rao, Nano Today 4, 96 (2009).

    Article  Google Scholar 

  19. Y. L. Zheng, C. M. Zhen, X. Q. Wang, L. Ma, X. L. Li, and D. L. Hou, Solid State Sci. 13, 1516 (2011).

    Article  ADS  Google Scholar 

  20. L. Ao, Y. G. Yuan, Y. Tian, J. L. Nie, H. Y. Xiao, H. Chen, X. Xiang, and X. T. Zu, Comp. Mater. Sci. 110, 368 (2015).

    Article  Google Scholar 

  21. X. Wang, C. M. Zhen, X. W. Liu, X. M. Liu, L. Ma, C. F. Pan, and D. L. Hou, Colloid Surf. A 446, 151 (2014).

    Article  Google Scholar 

  22. C. Zhen, Y. Liu, Y. Zhang, L. Ma, C. Pan, and D. Hou, J. Alloys Compd. 503, 6 (2010).

    Article  Google Scholar 

  23. V. G. Il’ves, M. G. Zuev, S. Yu. Sokovnin, and A. M. Murzakaev, Phys. Solid State 57, 2512 (2015).

    Article  ADS  Google Scholar 

  24. S. Yu. Sokovnin and V. G. Il’ves, Application of Pulse Electron Beam for Obtaining Nanopowders of Some Metal Oxides (RIO UrO RAN, Yekaterinburg, 2012) [in Russian].

    Google Scholar 

  25. K. Nomura, R. Kinoshita, I. Sakamoto, J. Okabayashi, and Y. Yamada, Hyperfine Interact. 208, 65 (2012).

    Article  ADS  Google Scholar 

  26. D. S. Xue, Y. L. Ma, Y. Huang, P. H. Zhou, Z. P. Niu, F. S. Li, R. Job, and W. R. Fahrner, J. Mater. Sci. Lett. 22, 1817 (2003).

    Article  Google Scholar 

  27. N. M. Dempsey, L. Ranno, D. Givord, J. Gonzalo, R. Serna, G. T. Fei, A. K. Petford-Long, R. C. Doole, and D. E. Hole, J. Appl. Phys. 90, 6268 (2001).

    Article  ADS  Google Scholar 

  28. S. Yu. Sokovnin, V. G. Il’ves, A. I. Surdo, I. I. Mil’man, and M. I. Vlasov, Nanotechnol. Russ. 8, 466 (2013).

    Article  Google Scholar 

  29. C. M. Zhen, C. M. Zhen, L. Ma, X. L. Li, C. F. Pan, and D. L. Hou, Acta Phys. Sin. 60, 117502 (2011).

    Google Scholar 

  30. V. G. Il’ves, A. I. Medvedev, A. M. Murzakaev, S. Yu. Sokovnin, A. V. Spirina, and M. A. Uimin, Fiz. Khim. Obrab. Mater., No. 2, 65 (2011).

    Google Scholar 

  31. M. S. Akselrod, V. S. Kortov, D. J. Kravetsky, and V. I. Gotlib, Rad. Prot. Dosim. 33, 119 (1990).

    Article  Google Scholar 

  32. S. W. S. McKeever, M. S. Akselrod, L. E. Colyott, N. A. Larsen, J. C. Polf, and V. Whitley, Rad. Prot. Dosim. 84, 163 (1999).

    Article  Google Scholar 

  33. V. S. Kortov, V. A. Pustovarov, and T. V. Shtang, J. Lumin. A 169, 24 (2016).

    Article  Google Scholar 

  34. J. E. Villarreal-Barajas, L. Escobar-Alarcon, P. R. Gonzalez, E. Camps, and M. Barboza-Flores, Rad. Meas. 35, 355 (2002).

    Article  Google Scholar 

  35. A. I. Surdo, M. I. Vlasov, V. G. Il’ves, I. I. Milman, V. A. Pustovarov, and S. Yu. Sokovnin, Rad. Meas. 71, 47 (2014).

    Article  Google Scholar 

  36. L. C. Yong, H. Wagiran, and A. K. Ismail, J. Teknologi (Sci. Eng.) 62, 109 (2013).

    Google Scholar 

  37. V. S. M. de Barros, H. J. Khoury, W. M. Azevedo, and E. F. Silva, Nucl. Instrum. Methods Phys. Res. A 580, 180 (2007).

    Article  ADS  Google Scholar 

  38. N. V. Gavrilov, A. C. Kamenetskikh, and A. V. Chukin, Izv. Vyssh. Uchebn. Zaved., Fiz. 58 (9/3), 83 (2015).

    Google Scholar 

  39. S. Schlabach, V. Szabó, D. Vollath, A. Braun, and R. Clasen, Solid State Phenom. 99–100, 191 (2004).

    Article  Google Scholar 

  40. R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, J. Lumin. 171, 72 (2016).

    Article  Google Scholar 

  41. S. Y. Sokovnin and V. G. Il’ves, Ferroelectrics 436, 101 (2012).

    Article  Google Scholar 

  42. V. I. Solomonov and S. G. Mikhailov, Pulsed Cathodoluminescence and Its Applications to Analysis of Condensed Substances (Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2003) [in Russian].

    Google Scholar 

  43. S. Yu. Sokovnin and V. G. Il’ves, Nanotechnol. Russ. 8, 220 (2013).

    Article  Google Scholar 

  44. M. S. Kulkarni, D. R. Mishra, K. P. Muthe, A. Singh, M. Roy, S. K. Gupta, and S. Kannan, Rad. Meas. 39, 277 (2005).

    Article  Google Scholar 

  45. V. S. Kortov, S. V. Zvonarev, and A. I. Medvedev, J. Lumin. 131, 1904 (2011).

    Article  Google Scholar 

  46. A. N. Tarashchan, Luminescence of Minerals (Naukova Dumka, Kiev, 1978) [in Russian].

    Google Scholar 

  47. A. B. Kulinkin, S. P. Feofilov, and R. I. Zakharchenya, Phys. Solid State 42, 857 (2000).

    Article  ADS  Google Scholar 

  48. L. Museur, M. Bouslama, M. Amamra, and A. Kanaev, Phys. Status Solidi (RRL) 7, 1026 (2013).

    Article  ADS  Google Scholar 

  49. V. Kortov, S. Zvonarev, A. Kiryakov, and D. Ananchenko, Mater. Chem. Phys. 170, 168 (2016).

    Article  Google Scholar 

  50. S. B. Ogale, Adv. Mater. 22, 3125 (2010).

    Article  Google Scholar 

  51. C. das Pemmaraju and S. Sanvito, Phys. Rev. Lett. 94, 217205 (2005).

    Article  ADS  Google Scholar 

  52. F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, Mater. Sci. Eng. R 62, 1 (2008).

    Article  Google Scholar 

  53. A. L. Ivanovskii, Phys. Usp. 50, 1031 (2007).

    Article  ADS  Google Scholar 

  54. P. Esquinazi, W. Hergert, D. Spemann, A. Setzer, and A. Ernst, IEEE Trans. Magn. 49, 4668 (2013).

    Article  ADS  Google Scholar 

  55. J. Osorio-Guillén, S. Lany, S. V. Barabash, and A. Zunger, Phys. Rev. B 75, 184421 (2007).

    Article  ADS  Google Scholar 

  56. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, T. Tietze, E. Goering, G. Schutz, P. B. Straumal, and B. Baretzky, Beilstein J. Nanotechnol. 4, 361 (2013).

    Article  Google Scholar 

  57. T. Tietze, P. Audehm, Y.-C. Chen, G. Schutz, B. Straumal, S. Protasova, A. Mazilkin, P. Straumal, T. Prokscha, H. Luetkens, Z. Salman, A. Suter, B. Baretzky, K. Fink, W. Wenzel, D. Danilov, and E. Goering, Sci. Rep. 5, 08871 (2015).

    Article  ADS  Google Scholar 

  58. S. Ghose, T. Rakshit, R. Ranganathan, and D. Jana, RSC Adv. 5, 99766 (2015).

    Article  Google Scholar 

  59. S. Ning and Z. J. Zhang, RSC Adv. 5, 3636 (2015).

    Article  Google Scholar 

  60. S. Ning, P. Zhan, Q. Xie, Z. Li, and Z. Zhang, J. Phys. D 46, 445004 (2013).

    Article  ADS  Google Scholar 

  61. J. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  ADS  Google Scholar 

  62. J. M. D. Coey, K. Wongsaprom, J. Alaria, and M. Venkatesan, J. Phys. D 41, 134012 (2008).

    Article  ADS  Google Scholar 

  63. T. V. Perevalov, A. V. Shaposhnikov, V. A. Gritsenko, H. Wong, J. H. Han, and C. W. Kim, JETP Lett. 85, 165 (2007).

    Article  ADS  Google Scholar 

  64. M. Yazdanmehr, S. J. Asadabadi, A. Nourmohammadi, M. Ghasemzadeh, and M. Rezvanian, Nanoscale Res. Lett. 7, 488 (2012).

    Article  ADS  Google Scholar 

  65. M. A. Konyushenko, E. O. Filatova, A. S. Konashuk, A. V. Nelyubov, and A. S. Shulakov, Tech. Phys. Lett. 41, 922 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Il’ves.

Additional information

Original Russian Text © V.G. Il’ves, M.A. Zuev, A.M. Murzakaev, S.V. Pryanichnikov, S.Yu. Sokovnin, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 7, pp. 1393–1405.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ves, V.G., Zuev, M.A., Murzakaev, A.M. et al. Structural and magnetic–luminescent properties of carbon-doped aluminum oxide. Phys. Solid State 59, 1420–1432 (2017). https://doi.org/10.1134/S1063783417070083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417070083

Navigation