Skip to main content

Charge transfer in carbon composites based on fullerenes and exfoliated graphite


Kinetic processes have been studied in composites based on fullerenes and exfoliated graphite at the initial proportions of components from 1: 16 to 16: 1 in mass. The samples are produced by heat treatment of initial dispersed mixtures in vacuum in the diffusion–adsorption process, their further cold pressing, and annealing. It is shown that the annealing almost does not influence the conduction mechanisms and only induces additional structural defects acting as electron traps. As a whole, the results obtained at the noted proportions of components make it possible to consider the material as a compensated metallic system with a structural disorder in which the charge transfer at temperatures from 4.2 K to room temperature is controlled by quantum interference phenomena. At low temperatures, the effect of a weak localization is observed, and the electron–electron interactions take place at medium and high temperatures.

This is a preview of subscription content, access via your institution.


  1. 1.

    V. I. Berezkin, Carbon: Closed Nanoparticles, Macrostructures, Materials (ARTEGO, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  2. 2.

    V. I. Berezkin, Introduction to Physical Adsorption and Technology of Carbon Adsorbents (Viktoriya Plyus, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  3. 3.

    Q. Z. Xue and X. Zhang, Carbon 43, 760 (2005).

    Article  Google Scholar 

  4. 4.

    O. Gunnarson, Rev. Mod. Phys. 69, 575 (1997).

    ADS  Article  Google Scholar 

  5. 5.

    V. I. Berezkin, JETP Lett. 83, 388 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    V. I. Berezkin and V. V. Popov, Phys. Solid State 49, 1803 (2007).

    ADS  Article  Google Scholar 

  7. 7.

    V. I. Berezkin, V. V. Popov, and M. V. Tomkovich, Phys. Solid State 59, 620 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    C. A. Klein, Rev. Mod. Phys. 34, 56 (1962).

    ADS  Article  Google Scholar 

  9. 9.

    Short Chemical Encyclopedy, Ed. by I. L. Knunyants (Sov. Entsiklopediya, Moscow, 1967), Vol. 5 [in Russian].

  10. 10.

    M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).

    ADS  Article  Google Scholar 

  11. 11.

    S. V. Shulepov, Physics of Carbon-Graphite Materials (Metallurgiya, Chelyabinsk, 1990) [in Russian].

    Google Scholar 

  12. 12.

    P. S. Kireev, Semiconductor Physics (Vysshaya Shkola, Moscow, 1975, Mir, Moscow, 1978).

    Google Scholar 

  13. 13.

    D. B. McWhan, T. M. Rice, and P. H. Schmidt, Phys. Rev. 177, 1063 (1969).

    ADS  Article  Google Scholar 

  14. 14.

    J. C. Nickerson, R. M. White, K. N. Lee, R. Bachmann, T. H. Geballe, and G. W. Hull, Phys. Rev. B 3, 2030 (1971).

    ADS  Article  Google Scholar 

  15. 15.

    H. M. Jaeger, D. B. Haviland, B. G. Orr, and A. M. Goldman, Phys. Rev. B 40, 182 (1989).

    ADS  Article  Google Scholar 

  16. 16.

    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52, 1115 (2010).

    ADS  Article  Google Scholar 

  17. 17.

    V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martinez-Fernandez, Phys. Solid State 53, 276 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    I. Lazar and G. Lazar, J. Non-Cryst. Solids 352, 2096 (2006).

    ADS  Article  Google Scholar 

  19. 19.

    K. Seeger, Semiconductor Physics (Springer, Wien, New York, 1973).

    Book  MATH  Google Scholar 

  20. 20.

    B. I. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, Vol. 10 of Modern Problems in Condensed Matter Science, Ed. by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985), p. 1.

  21. 21.

    P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    ADS  Article  Google Scholar 

  22. 22.

    T. L. Makarova, Semiconductors 35, 243 (2001).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. I. Berezkin.

Additional information

Original Russian Text © V.I. Berezkin, 2017, published in Fizika Tverdogo Tela, 2017, Vol., No. 7, pp. 1432–1439.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berezkin, V.I. Charge transfer in carbon composites based on fullerenes and exfoliated graphite. Phys. Solid State 59, 1460–1467 (2017).

Download citation