Skip to main content
Log in

Method for determining the electron and positron work function from a metal containing vacancies

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A method is proposed that combines self-consistent solutions for a monovacancy in metal without regard to the outer surface and the solution in the stable jelly model for metal with homogeneous volume and flat surface, but a lowered vacancy density due to the presence of a superlattice of vacancy voids with relative concentration c v . When using c v as a small parameter, all energy characteristics are expanded in a functional series. Zero expansion terms relate to defect-free metal, and linear in c v corrections are expressed in terms of its characteristics. Exact formulas allowing the consideration of the effect of vacancies on the electron and positron work function are derived. Characteristics are calculated at various temperatures for Al and Na by the Kohn–Sham method. The method application to spherical clusters is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955; Academy of Sciences of the USSR, Moscow, 1959).

    MATH  Google Scholar 

  2. R. S. Berry and B. M. Smirnov, J. Exp. Theor. Phys. 98 (2), 366 (2004); R. S. Berry and B. M. Smirnov, Phys. Rep. 527, 205 (2013).

    Article  ADS  Google Scholar 

  3. A. V. Babich, P. V. Vakula, and V. V. Pogosov, Phys. Solid State 56 (5), 873 (2014).

    Article  ADS  Google Scholar 

  4. A. V. Babich, P. V. Vakula, and V. V. Pogosov, Phys. Solid State 56 (9), 1726 (2014).

    Article  ADS  Google Scholar 

  5. J. P. Perdew, H. Q. Tran, and E. D. Smith, Phys. Rev. B: Condens. Matter 42, 11627 (1990).

    Article  ADS  Google Scholar 

  6. V. V. Pogosov, Solid State Commun. 89, 1017 (1994).

    Article  ADS  Google Scholar 

  7. I. T. Iakubov and V. V. Pogosov, Physica A (Amsterdam) 214, 287 (1995); A. Kiejna and V. V. Pogosov, J. Phys.: Condens. Matter 8, 4245 (1996).

    Article  ADS  Google Scholar 

  8. N. D. Drummond, P. Lopez Rios, R. J. Needs, and C. J. Pickard, Phys. Rev. Lett. 107, 207402 (2011).

    Article  ADS  Google Scholar 

  9. Y. Kraftmakher, Phys. Rep. 299, 79 (1998); C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).

    Article  ADS  Google Scholar 

  10. M. V. Shtremel’, Strength of Alloys: Part 1. Lattice Defects (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  11. E. M. Gullikson and A. P. Mills, Phys. Rev. B: Condens. Matter 35, 8759 (1987).

    Article  ADS  Google Scholar 

  12. A. V. Babich, V. V. Pogosov, and V. I. Reva, Phys. Solid State 57 (11), 2135 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pogosov.

Additional information

Original Russian Text © V.V. Pogosov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 6, pp. 1051–1055.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogosov, V.V. Method for determining the electron and positron work function from a metal containing vacancies. Phys. Solid State 59, 1071–1075 (2017). https://doi.org/10.1134/S106378341706021X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341706021X

Navigation