Skip to main content
Log in

Ionization potential of a metal cluster containing vacancies

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A consistent procedure for determining the ionization potential of a large metal cluster of radius R N, v , consisting of N atoms and N v vacancies, is proposed. The perturbation theory in small parameters R v /R N, v and L v /R v (Rv and L v are average distance between vacancies and the length of electron scattering on vacancies, respectively) is constructed in the effective-medium approximation for the electron ground state energy. The effective vacancy potential profile, the electron scattering phase and length are calculated by the Kohn–Sham method for a macroscopic metal in the stable jelly model. The obtained analytical dependences can be useful to analyze the results of photoionization experiments and to determine the size dependence of the vacancy concentration, including that near the melting temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Berry and B. M. Smirnov, J. Exp. Theor. Phys. 98 (2), 366 (2004).

    Article  ADS  Google Scholar 

  2. R. S. Berry and B. M. Smirnov, Phys. Rep. 527, 205 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  3. A. V. Babich, V. V. Pogosov, and V. I. Reva, Phys. Solid State 57 (11), 2135 (2015).

    Article  ADS  Google Scholar 

  4. C. Hock, C. Bartels, S. Straßburg, M. Schmidt, H. Haberland, B. von Issendorff, and A. Aguado, Phys. Rev. Lett. 102, 043401 (2009).

    Article  ADS  Google Scholar 

  5. C. C. Yang and S. Li, Phys. Rev. B: Condens. Matter 75, 165413 (2007).

    Article  ADS  Google Scholar 

  6. G. Guisbiers, Nanoscale Res. Lett. 5, 1132 (2010).

    Article  ADS  Google Scholar 

  7. G. A. Breaux, C. M. Neal, B. Cao, and M. F. Jarrold, Phys. Rev. Lett. 94, 173401 (2005).

    Article  ADS  Google Scholar 

  8. A. K. Starace, B. Cao, O. H. Judd, I. Bhattacharyya, and M. F. Jarrold, J. Chem. Phys. 132, 034302 (2010).

    Article  ADS  Google Scholar 

  9. C. Bréchignac, Ph. Cahuzac, J. Leygnier, and J. Weiner, J. Chem. Phys. 90, 1492 (1989).

  10. U. R. Martin, F. Jarrold, J. E. Bower, and J. S. Kraus, J. Chem. Phys. 91, 2912 (1989).

  11. A. Halder and V. V. Kresin, J. Chem. Phys. 143, 164313 (2015).

    Article  ADS  Google Scholar 

  12. J. P. Perdew, M. Brajczewska, and C. Fiolhais, J. Chem. Phys. 108, 8182 (1998).

    Article  ADS  Google Scholar 

  13. V. V. Pogosov, Introduction to Physics of Charged and Size Effects: Surface, Clusters, Low-Dimensional Systems (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  14. A. V. Babich, P. V. Vakula, and V. V. Pogosov, Phys. Solid State 56 (5), 873 (2014).

    Article  ADS  Google Scholar 

  15. A. V. Babich, P. V. Vakula, and V. V. Pogosov, Phys. Solid State 56 (9), 1726 (2014).

    Article  ADS  Google Scholar 

  16. V. V. Pogosov, W. V. Pogosov, and D. P. Kotlyarov, J. Exp. Theor. Phys. 90 (5), 908 (2000).

  17. V. V. Pogosov, Phys. Solid State 35 (4), 518 (1993).

    ADS  Google Scholar 

  18. B. E. Springett, M. H. Cohen, and J. Jortner, Phys. Rev. 159, 183 (1967).

    Article  ADS  Google Scholar 

  19. I. T. Iakubov and V. V. Pogosov, J. Chem. Phys. 106, 2306 (1997).

    Article  ADS  Google Scholar 

  20. J. Bardeen, J. Chem. Phys. 6, 367 (1938).

    Article  ADS  Google Scholar 

  21. M. H. Cohen and F. S. Ham, J. Phys. Chem. Solids 16, 177 (1960).

    Article  ADS  Google Scholar 

  22. M. J. Stott and P. Kubica, Phys. Rev. B: Solid State 11, 1 (1975).

    Article  ADS  Google Scholar 

  23. T. P. Martin, Phys. Rep. 273, 199 (1996).

    Article  ADS  Google Scholar 

  24. W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).

  25. M. Brack, Rev. Mod. Phys. 65, 677 (1993).

    Article  ADS  Google Scholar 

  26. M. A. Hoffmann, G. Wrigge, and B. von Issendorff, Phys. Rev. B: Condens. Matter 66, 014404 (2002).

    Article  Google Scholar 

  27. P. Ziesche, J. P. Perdew, and C. Fiolhais, Phys. Rev. B: Condens. Matter 49, 7919 (1994).

    Article  ADS  Google Scholar 

  28. J. A. Alonso and N. M. March, Surf. Sci. 160, 509 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pogosov.

Additional information

Original Russian Text © V.V. Pogosov, V.I. Reva, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 6, pp. 1043–1050.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogosov, V.V., Reva, V.I. Ionization potential of a metal cluster containing vacancies. Phys. Solid State 59, 1063–1070 (2017). https://doi.org/10.1134/S1063783417060208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417060208

Navigation