Skip to main content
Log in

An analytical description of transient thermal processes in harmonic crystals

  • Thermal Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We consider two transient thermal processes in uniformly heated harmonic crystals: (i) equalibration of kinetic and potential energies and (ii) redistribution of the kinetic energy among the spatial directions. Equations describing these two processes in two-dimensional and three-dimensional crystals are derived. Analytical solutions of these equations for the square and triangular lattices are obtained. It is shown that the characteristic time of the transient processes is of the order of ten periods of atomic vibrations. The difference between the kinetic and potential energies oscillates in time. For the triangular lattice, amplitude of the oscillations decays inversely proportional to time, while for the square lattice it decays inversely proportional to the square root of time. In general, there is no equipartition of the kinetic energy among spatial directions, i.e. the kinetic temperature demonstrates tensor properties. In addition, the covariance of velocities of different particles is nonzero even at the steady state. The analytical results are supported by numerical simulations. It is also shown that the obtained solutions accurately describe the transient thermal processes in weakly nonlinear crystals at short times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. V. Gol’dshtein and N. F. Morozov, Fiz. Mezomekh. 10 (5), 17 (2007).

    Google Scholar 

  2. I. F. Golovnev, E. I. Golovneva, and V. M. Fomin, Comput. Mater. Sci. 36, 176 (2006).

    Article  Google Scholar 

  3. S. N. Korobeynikov, V. V. Alyokhin, B. D. Annin, and A. V. Babichev, Arch. Mech. 64, 367 (2012).

    Google Scholar 

  4. J. C. Reid, D. J. Evans, and D. J. Searles, J. Chem. Phys. 136, 02110 (2012).

    Article  Google Scholar 

  5. C. F. Petersen, D. J. Evans, and S. R. Williams, J. Chem. Phys. 144, 074107 (2016).

    Article  ADS  Google Scholar 

  6. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  7. B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, Phys. Rev. A: At., Mol., Opt. Phys. 22, 2798 (1980).

    Article  ADS  Google Scholar 

  8. B. L. Holian and M. Mareschal, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 82, 026707 (2010).

    Article  Google Scholar 

  9. W. G. Hoover, C. G. Hoover, and K. P. Travis, Phys. Rev. Lett. 112, 144504 (2014).

    Article  ADS  Google Scholar 

  10. F. Silva, S. M. Teichmann, S. L. Cousin, M. Hemmer, and J. Biegert, Mater. Commun. 6, 6611 (2015).

    Google Scholar 

  11. S. I. Ashitkov, P. S. Komarov, M. B. Agranat, G. I. Kanel’, and V. E. Fortov, JETP Lett. 98 (3), 384 (2013).

    Article  ADS  Google Scholar 

  12. N. A. Inogamov, Yu. V. Petrov, V. V. Zhakhovsky, V. A. Khokhlov, B. J. Demaske, S. I. Ashitkov, K. V. Khishchenko, K. P. Migdal, M. B. Agranat, S. I. Anisimov, V. E. Fortov, and I. I. Oleynik, AIP Conf. Proc. 1464, 593 (2012).

    Article  ADS  Google Scholar 

  13. K. V. Poletkin, G. G. Gurzadyan, J. Shang, and V. Kulish, Appl. Phys. B 107, 137 (2012).

    Article  ADS  Google Scholar 

  14. D. A. Indeitsev, V. N. Naumov, B. N. Semenov, and A. K. Belyaev, Z. Angew. Math. Mech. 89, 279 (2009).

    Article  Google Scholar 

  15. V. A. Kuzkin and A. M. Krivtsov, Dokl. Phys. 62 (2), 85 (2017).

    Article  Google Scholar 

  16. Z. Rieder, J. L. Lebowitz, and E. Lieb, J. Math. Phys. 8, 1073 (1967).

    Article  ADS  Google Scholar 

  17. A. M. Krivtsov, Dokl. Phys. 59 (9), 427 (2014).

    Article  Google Scholar 

  18. A. M. Krivtsov, arXiv:1509.02506 [cond-mat.statmech] (2015).

  19. A. M. Krivtsov, Dokl. Phys. 60 (9), 407 (2015).

    Article  ADS  Google Scholar 

  20. T. V. Dudnikova, A. I. Komech, and H. Spohn, J. Math. Phys. 44, 2596 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  21. T. V. Dudnikova, A. I. Komech, and N. J. Mauser, J. Stat. Phys. 114, 1035 (2004).

    Article  ADS  Google Scholar 

  22. D. J. Evans, D. J. Searles, and S. R. Williams, J. Stat. Mech. 2009, P07029 (2009).

    Article  Google Scholar 

  23. H. Spohn and J. L. Lebowitz, Commun. Math. Phys. 54, 97 (1977).

    Article  ADS  Google Scholar 

  24. A. Dhar and R. Dandekar, Physica A (Amsterdam) 418, 49 (2014).

    Article  ADS  Google Scholar 

  25. A. V. Savin and O. V. Gendel’man, Phys. Solid State 43 (2), 355 (2001).

    Article  ADS  Google Scholar 

  26. S. Lepri, R. Livi, and A. Politi, Phys. Rep. 377, 1 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Jara, T. Komorowski, and S. Olla, Commun. Math. Phys. 339, 407 (2015).

    Article  ADS  Google Scholar 

  28. M. B. Babenkov, A. M. Krivtsov, and D. V. Tsvetkov, Fiz. Mezomekh. 19 (1), 60 (2016).

    Google Scholar 

  29. A. I. Mikhailin, L. V. Zhigilei, and A. I. Slutsker, Phys. Solid State 37 (6), 972 (1995).

    ADS  Google Scholar 

  30. A. I. Slutsker, Phys. Solid State 46 (9), 1658 (2004).

    Article  ADS  Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1) (Nauka, Moscow, 1976, Butterworth–Heinemann, Oxford, 1980).

    Google Scholar 

  32. A. M. Krivtsov, in Problems of Mathematical Physics and Applied Mathematics, Proceedings of the Workshop Dedicated to the 75th Anniversary of Professor E. A. Tropp (Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, 2016), pp. 63–81.

    Google Scholar 

  33. W. G. Hoover, Computational Statistical Mechanics (Elsevier, New York, 1991).

    Google Scholar 

  34. G. S. Mishuris, A. B. Movchan, and L. I. Slepyan, J. Mech. Phys. Solids 57, 1958 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  35. V. A. Kuzkin, A. M. Krivtsov, E. A. Podolskaya, and M. L. Kachanov, Philos. Mag. 96, 1538 (2016).

    Article  ADS  Google Scholar 

  36. P. Dean, Proc. Cambridge Philos. Soc. 59, 383 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. M. Krivtsov and V. A. Kuzkin, Mech. Solids 46 (3), 387 (2011).

    Article  ADS  Google Scholar 

  38. A. Yu. Panchenko, E. A. Podol’skaya, and A. M. Krivtsov, Dokl. Phys. 62 (3), 141 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuzkin.

Additional information

Original Russian Text © V.A. Kuzkin, A.M. Krivtsov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 5, pp. 1023–1035.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzkin, V.A., Krivtsov, A.M. An analytical description of transient thermal processes in harmonic crystals. Phys. Solid State 59, 1051–1062 (2017). https://doi.org/10.1134/S1063783417050201

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417050201

Navigation