Advertisement

Physics of the Solid State

, Volume 59, Issue 4, pp 728–732 | Cite as

Magnetic phase transitions in Ln 1–x Sr x Co0.5Mn0.5O3 (Ln = La, Pr, Nd, and Eu)

  • I. O. Troyanchuk
  • M. V. Bushinskii
  • A. N. Chobot
  • N. V. Tereshko
  • O. S. Mantytskaya
  • E. A. Efimova
  • V. V. Sikolenko
  • V. M. Dobryanskii
Magnetism
  • 35 Downloads

Abstract

The system of La1–x Sr x Co0.5Mn0.5O3 solid solutions have been studied by neutron diffraction and the measurement of the magnetization. The composition with x = 0 has the monoclinic structure (space group P21/n); the compositions with 0.15 ≤ x ≤ 0.6 are rhombohedral (R \(\bar 3\) c), and the composition with x = 0.75 is cubic (Pm \(\bar 3\) m). All the compositions with x ≤ 0.75 are shown to contain a ferromagnetic component. The stoichiometric composition with x = 0.5 undergoes a sharp ferrromagnet–paramagnet transition at 240 K; however, no coherent magnetic contribution to the neutron diffraction has been detected. The magnetic data are interpreted, assuming that the ferromagnetism at x ≤ 0.15 is due to positive superexchange Co2+–O–Mn4+ interaction, while, at x ≥ 0.25, the superexchange interaction between ions Co3+ in a high-spin state and ions Mn4+ is responsible for the ferromagnetic component.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. M. Raccah and J. B. Goodenough, Phys. Rev. 155, 932 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    M. A. Senaris-Rodriguez and J. B. Goodenough, J. Solid State Chem. 118, 323 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    J. S. Zhou and J. B. Goodenough, Phys. Rev. B: Condens. Matter 60, 15002 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    M. Ghiasi, M. U. Delgado-Jaime, A. Malekzadeh, R.-P. Wang, P. S. Miedema, M. Beye, and F. M. de Groot, J. Phys. Chem. C 120 (15), 8167 (2016).CrossRefGoogle Scholar
  6. 6.
    I. O. Troyanchuk, D. D. Khalyavin, J. W. Lynn, R. W. Erwin, Q. Huang, H. Szymczak, R. Szymczak, and M. Baran, J. Appl. Phys. 88, 360 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    T. Burnus, Z. Hu, H. H. Hsieh, V. L. J. Joly, P. A. Joy, M. W. Haverkort, H. Wu, A. Tanaka, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B: Condens. Matter 77, 125124 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    A. N. Vasiliev, O. S. Volkova, L. S. Lobanovskii, I. O. Troyanchuk, Z. Hu, L. H. Tjeng, D. I. Khomskii, H.-J. Lin, C. T. Chen, N. Tristan, F. Kretzschmar, R. Klingeler, and B. Büchner, Phys. Rev. B: Condens. Matter 77, 104442 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    A. J. Barón-González, C. Frontera, J. L. García-Muõz, J. Blasco, and C. Ritter, J. Phys.: Conf. Ser. 325, 012007 (2011).Google Scholar
  10. 10.
    I. O. Troyanchuk, A. N. Chobot, N. V. Tereshko, D. V. Karpinskii, V. V. Efimov, V. V. Sikolenko, and P. Henry, J. Exp. Theor. Phys. 112 (5), 837 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    O. Toulemonde, F. Studer, and B. Raveau, J. Solid State Commun. 118, 107 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    J.-H. Kwon, W. S. Choi, Y.-K. Kwon, R. Jung, J.-M. Zuo, H. N. Lee, and M. Kim, Chem. Mater. 26 (8), 2496 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. O. Troyanchuk
    • 1
  • M. V. Bushinskii
    • 1
  • A. N. Chobot
    • 1
  • N. V. Tereshko
    • 1
  • O. S. Mantytskaya
    • 1
  • E. A. Efimova
    • 2
  • V. V. Sikolenko
    • 3
  • V. M. Dobryanskii
    • 4
  1. 1.Scientific and Practical Materials Research CentreNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Joint Institute of Nuclear ResearchDubna, Moscow oblastRussia
  3. 3.Helmholtz Center BerlinBerlinGermany
  4. 4.Belarussian State Agrarian Technical UniversityMinskBelarus

Personalised recommendations