Physics of the Solid State

, Volume 59, Issue 4, pp 652–660 | Cite as

Synthesis and conductive properties of nanoisland Sn, Al, and Cu films

  • S. V. Tomilin
  • V. N. Berzhansky
  • E. T. Milyukova
  • O. A. Tomilina
  • A. S. Yanovsky


Nanoisland Sn, Al, and Cu films were synthesized on dielectric substrates and their morphology and conductive properties were investigated. It is shown that the initial effective film thickness significantly affects the morphological parameters of nanoislands. Study of the surface conductivity of the films at the condensation stage revealed the conductivity drop after termination of the deposition, which is related to the nanostructuring processes. It was found that the temperature dependences of the film conductivity include three portions: the low-temperature portion of the activation growth, the decrease upon nanostructuring, and the high-temperature portion of the activation growth.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. A. Antonets, L. N. Kotov, S. V. Nekipelov, and E. N. Karpushov, Tech. Phys. 49 (11), 1496 (2004).CrossRefGoogle Scholar
  2. 2.
    A. Ivanov, Sovrem. Svetotekh., No. 1, 45 (2010).Google Scholar
  3. 3.
    Yu. Panfilov, Tekhnol. Elektron. Prom-sti, No. 3, 76 (2007).Google Scholar
  4. 4.
    D. N. Lobanov, A. V. Novikov, and M. V. Shaleev, Growth of Ge(Si) Self-Assembled Nanoislands on Si(001) Substrates Using the Molecular Beam Epitaxy Method (An Electronic Textbook) (Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 2010) [in Russian].Google Scholar
  5. 5.
    A. I. Nikiforov, V. V. Ul’yanov, O. P. Pchelyakov, S. A. Teys, and A. K. Gutakovskii, Phys. Solid State 46 (1), 77 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    A. G. Bembel’, V. M. Samsonov, M. Yu. Pushkar’, and M. V. Samsonov, Vestn. Tver. Gos. Univ., Ser. Fiz., No. 6, 98 (2009).Google Scholar
  7. 7.
    K. Suzuki, H. Fujimori, and K. Hashimoto, Amorphous Metals (Butterworths, London, 1982; Metallurgiya, Moscow, 1987).Google Scholar
  8. 8.
    Handbook of Thin Film Technology, Ed. by L. I. Maissel and R. Glang (McGraw–Hill, New York, 1970, Sovetskoe Radio, Moscow, 1977), Vol. 2.Google Scholar
  9. 9.
    A. S. Yanovskii and S. V. Tomilin, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 7 (1), 140 (2013).CrossRefGoogle Scholar
  10. 10.
    E. S. Shim, H. S. Kang, S. S. Pang, J. S. Kang, I. Yun, and S. Y. Lee, Mater. Sci. Eng., B. 102, 366 (2003).CrossRefGoogle Scholar
  11. 11.
    H. M. Kalpana, V. S. Prasad, and M. M. Nayak, Int. J. Thin Films Sci. Technol. 2, 155 (2013).CrossRefGoogle Scholar
  12. 12.
    M. H. Habibi and N. Talebian, Acta Chim. Slov. 52, 53 (2005).Google Scholar
  13. 13.
    D. Raoufi, A. Kiasatpour, H. R. Fallah, and A. S. H. Rozatian, Appl. Surf. Sci. 253, 9085 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    D. G. Lim, G. S. Kang, S. I. Kwon, and J. H. Yi, J. Korean Phys. Soc. 51, 1073 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    S. V. Tomilin and A. S. Yanovsky, J. Nano-Electron. Phys. 5, 03014 (2013).Google Scholar
  16. 16.
    R. B. Salikhov, A. N. Lachinov, and A. A. Bunakov, Phys. Solid State 49 (1), 185 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    M. P. Fateev, Phys. Solid State 52 (6), 1123 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    A. P. Boltaev, N. A. Penin, A. O. Pogosov, and F. A. Pudonin, J. Exp. Theor. Phys. 99 (4), 827 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    V. I. Svettsov and I. V. Kholodkov, Physical Electronics and Electronic Devices (Ivanovo State University of Chemistry and Technology, Ivanovo, 2008) [in Russian].Google Scholar
  20. 20.
    L. P. Pavlov, Methods of Measurement of Parameters of Semiconductor Materials (Vysshaya Shkola, Moscow, 1987) [in Russian].Google Scholar
  21. 21.
    K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, ACS Photonics 2, 326 (2015).CrossRefGoogle Scholar
  22. 22.
    V. A. Belous, V. M. Lunev, V. S. Pavlov, and A. K. Turchina, Vopr. At. Nauki Tekh., No. 4, 221 (2006).Google Scholar
  23. 23.
    B. A. Osadin and G. I. Shapovalov, Fiz. Khim. Obrab. Mater., No. 5, 43 (1976).Google Scholar
  24. 24.
    V. B. Loboda and S. N. Khursenko, J. Exp. Theor. Phys. 103 (5), 790 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    A. Ito, H. Masumoto, and T. Goto, Mater. Trans. 49, 158 (2008).CrossRefGoogle Scholar
  26. 26.
    I. A. Gladskikh, N. B. Leonov, S. G. Przhibel’skii, and T. A. Vartanyan, Nanosyst.: Phys., Chem., Math. 4, 524 (2013).Google Scholar
  27. 27.
    P. B. Catrysse and Sh. Fan, Nano Lett. 10, 2944 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    J. L. M. Rupp and L. J. Gauckler, Solid State Ionics 177, 2513 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Tomilin
    • 1
  • V. N. Berzhansky
    • 1
  • E. T. Milyukova
    • 1
  • O. A. Tomilina
    • 1
  • A. S. Yanovsky
    • 2
  1. 1.Institute of Physics and Technologies, Research Center of Functional Materials and NanotechnologiesCrimean Federal UniversitySimferopolRussia
  2. 2.Zaporozhye National UniversityZaporozhyeUkraine

Personalised recommendations