Physics of the Solid State

, Volume 59, Issue 4, pp 780–783 | Cite as

The influence of resonance IR laser radiation on magnetoabsorption in quantum wires

  • E. P. Sinyavskii
  • S. A. Karapetyan
  • N. S. Kostyukevich
Low-Dimensional Systems
  • 20 Downloads

Abstract

The coefficient of interband absorption of a weak electromagnetic wave by quantum wires in a transverse magnetic field and an intense laser radiation field is calculated. It is shown that, if the laser radiation frequency is equal either to the size quantization frequency (dimensional infrared resonance) or to a hybrid frequency (magnetoinfrared resonance), laser illumination can determine the shape of absorption oscillations. In particular, it is shown that the second magnetoabsorption peak is split into two peaks, the half-widths of which and the distance between which depend on the intensity of resonance laser radiation. The influence of the polarization of IR radiation on the interband absorption in quantum wires is discussed. The dynamics of the frequency dependence of the optical absorption coefficient with increasing intensity of resonance laser radiation is studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Agarwal and C. M. Lieber, Appl. Phys. A 85, 209 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    Linyou Cao, J. S. White, Joon-Shik Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, Nat. Mater. 8, 643 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    A. B. Greytak, C. J. Barrelet, Yat Li, and Charlis M. Lieber, Appl. Phys. Lett. 87, 151103 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    E. Yu. Perlin and V. A. Kovarskii, Sov. Phys. Solid State 12 (11), 2512 (1970).Google Scholar
  5. 5.
    E. P. Sinyavskii, Sov. Phys. Solid State 16 (11), 2083 (1974).Google Scholar
  6. 6.
    E. P. Sinyavskii and S. A. Karapetyan, Phys. Solid State 48 (5), 962 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    E. P. Sinyavskii and E. I. Brusenskaya, Phys. Solid State 44 (6), 1166 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    F. M. Hashimzade, T. G. Ismailov, B. H. Hehdiev, and S. T. Pavlov, Phys. Rev. B: Condens. Matter 71, 165331 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).ADSCrossRefGoogle Scholar
  10. 10.
    E. P. Sinyavskii and R. A. Khamidullin, Semiconductors 36 (8), 924 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    E. P. Sinyavskii and S. A. Karapetyan, Semiconductors 46 (8), 1008 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    E. P. Sinyavskii and R. A. Khamidullin, Semiconductors 40 (11), 1333 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    E. P. Sinyavskii, E. Yu. Kanarovskii, and N. S. Kostyukevich, Opt. Spectrosc. 119 (5), 805 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. P. Sinyavskii
    • 1
  • S. A. Karapetyan
    • 2
  • N. S. Kostyukevich
    • 2
  1. 1.Institute of Applied PhysicsAcademy of Sciences of MoldovaKishinevMoldova
  2. 2.Transnistria State UniversityTiraspolMoldova

Personalised recommendations