Advertisement

Physics of the Solid State

, Volume 59, Issue 4, pp 808–814 | Cite as

Effect of γ-radiation on the strain characteristics of a high-filled wood-plastic composite

  • V. V. Shpeizman
  • P. N. Yakushev
  • S. A. Tokovoi
  • A. S. Smolyanskii
Polymers

Abstract

The strain rate and the characteristics of the jumps at micro- and nanolevels were measured by the high-precision interferometric method for a wood-plastic composite irradiated to doses of 0–100 kGy. Radiation was shown to strengthen the material and change the characteristics of strain rate and value jumps. Strain jumps and mean-square deviations of the measured strain rate from its smoothened time dependence were determined for micro- and nanosized jumps. The change of these characteristics depending on the radiation dose of specimens was traced. A relation between the characteristics of micrometer jumps and the macroscopic strain was revealed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. Milinchuk, E. R. Klinshpont, and V. I. Tupikov, Fundamentals of Radiation Resistance of Organic Materials (Energoatomizdat, Moscow, 1994) [in Russian].Google Scholar
  2. 2.
    V. S. Ivanov, Radiation Chemistry of Polymers (Khimiya, Leningrad, 1988, CRC Press, Boca Raton, 1992).Google Scholar
  3. 3.
    A. S. Freidin, Action of Ionizing Radiation on Wood and on Its Components (Goslesbumizdat, Moscow, 1961) [in Russian].Google Scholar
  4. 4.
    D. Ndiaye, A. M. Badji, and A. Tidjani, J. Compos. Mater. (2013). http://jcm.sagepub.com/content/early/2013/10/11/0021998313506241.Google Scholar
  5. 5.
    A. Palm, J. Smith, M. Driscoll, L. Smith, and L. S. Larsen, Phys. Procedia 66, 595 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    N. N. Peschanskaya, Vysokomol. Soedin., Ser. A 31, 1181 (1989).Google Scholar
  7. 7.
    N. N. Peschanskaya and P. N. Yakushev, Phys. Solid State 40 (9), 1486 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Shpeizman and N. N. Peschanskaya, Phys. Solid State 51 (6), 1149 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    N. N. Peschanskaya, V. V. Shpeizman, P. N. Yakushev, A. S. Smolyanskii, and A. S. Shvedov, Bull. Russ. Acad. Sci.: Phys. 73 (10), 1427 (2009).CrossRefGoogle Scholar
  10. 10.
    N. N. Peschanskaya, A. S. Smolyanskii, and A. S. Shvedov, Phys. Solid State 51 (6), 1293 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Shpeizman, N. N. Peschanskaya, P. N. Yakushev, A. S. Smolyanskii, A. S. Shvedov, and V. G. Cheremisov, Phys. Solid State 52 (2), 265 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Shpeizman, P. N. Yakushev, L. I. Trakhtenberg, and A. S. Smolyanskii, Phys. Solid State 56 (12), 2485 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    V. V. Shpeizman, T. S. Orlova, B. K. Kardashev, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 56 (3), 538 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    V. V. Shpeizman, P. N. Yakushev, N. N. Peschanskaya, Zh. V. Mukhina, A. S. Shvedov, V. G. Cheremisov, and A. S. Smolyanskii, Phys. Solid State 54 (6), 1229 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Shpeizman
    • 1
  • P. N. Yakushev
    • 1
  • S. A. Tokovoi
    • 2
    • 3
  • A. S. Smolyanskii
    • 2
    • 4
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Karpov Institute of Physical ChemistryMoscowRussia
  3. 3.LLC PolywoodMoscowRussia
  4. 4.Mendeleev Russian University of Chemical TechnologyMoscowRussia

Personalised recommendations