Advertisement

Physics of the Solid State

, Volume 59, Issue 4, pp 733–736 | Cite as

Field-induced magnetic transition in a mixed rare-earth aluminum garnet Er2HoAl5O12

  • E. V. Shevchenko
  • E. V. Charnaya
  • E. N. Khazanov
  • A. V. Taranov
  • A. S. Bugaev
Magnetism

Abstract

The temperature dependence of the ac magnetic susceptibility of a single-crystal mixed rare-earth garnet Er2HoAl5O12 has been investigated within the range from 1.8 to 300 K in a zero constant field and in applied bias fields of up to 9 T. In the absence of a constant magnetic field the magnetic susceptibility followed the Curie–Weiss law. The application of a constant magnetic field caused a magnetic phase transition, the temperature of which increased with increasing magnetic field. The temperature of the maximum of the ac magnetic susceptibility, which is a characteristic of the phase transition, did not show a noticeable dependence on the frequency of the alternating magnetic field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Nauka, Moscow, 1975; Springer-Verlag, Berlin, 1990).CrossRefGoogle Scholar
  2. 2.
    A. Kushino, Y. Aoki, N. Y. Yamasaki, T. Namiki, Y. Ishisaki, T. D. Matsuda, T. Ohashi, K. Mitsuda, and T. Yazawa, J. Appl. Phys. 90, 5812 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    S. Nagata, H. Sasaki, K. Suzuki, J. Kiuchi, and N. Wada, J. Phys. Chem. Solids 62, 1123 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    B. E. Keen, D. P. Landau, and W. P. Wolf, Phys. Lett. 23, 202 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    D. P. Landau, B. B. Keen, B. Schneider, and W. P. Wolf, Phys. Rev. B: Solid State 3 (7), 2310 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    Kh. S. Bagdasarov, A. P. Dodokin, and A. A. Sorokin, Phys. Solid State 30 (6), 1059 (1988).Google Scholar
  7. 7.
    I. Mirebeau, I. N. Goncharenko, P. Cadavez-Pares, S. T. Bramwell, M. J. P. Gingras, and J. S. Gardner, Nature (London) 420, 54 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, Phys. Rev. B: Condens. Matter 78 (6), 064412 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    A. P. Ramirez, in Handbook of Magnetic Materials, Ed. by K. H. Buschow (Elsevier, New York, 2001), Vol. 13, p. 423.Google Scholar
  10. 10.
    I. de Pedro, J. M. Rojo, J. Rodríguez Fernández, M. T. Fernández-Díaz, and T. Rojo, Phys. Rev. B: Condens. Matter 81 (13), 134431 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    J. M. Rojo, J. L. Mesa, L. Lezama, J. L. Pizarro, M. I. Arriortua, J. Rodríguez Fernández, G. E. Barberis, and T. Rojo, Phys. Rev. B: Condens. Matter 66 (9), 094406 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Shevchenko
    • 1
  • E. V. Charnaya
    • 1
  • E. N. Khazanov
    • 2
  • A. V. Taranov
    • 2
  • A. S. Bugaev
    • 3
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Kotelnikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia

Personalised recommendations