Physics of the Solid State

, Volume 59, Issue 4, pp 758–765 | Cite as

Polariton excitations in a non-ideal array of microcavities with quantum dots

  • V. V. Rumyantsev
  • S. A. Fedorov
  • K. V. Gumennik
Optical Properties
  • 25 Downloads

Abstract

The polariton spectrum of a one-dimensional non-ideal array of coupled microcavities containing quantum dots has been studied. The specific features of the dispersion of electromagnetic excitations, which are induced in this system both by a variation in the distance between the adjacent microcavities and by a variation in the composition of the quantum dots, have been investigated using the numerical simulation within the framework of the virtual crystal approximation. The density of states of the quasiparticles under consideration has been determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Institute of Physics, Bristol, 2005).Google Scholar
  2. 2.
    Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, J. Opt. Soc. Am. B 22, 2144 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Phys. Rev. Lett. 94 (7), 073903 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88 (2), 023602 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    A. P. Alodjants, I. O. Barinov, and S. M. Arakelian, J. Phys. B: At., Mol. Opt. Phys. 43, 095502 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    E. S. Sedov, A. P. Alodjants, S. M. Arakelian, Y. Y. Lin, and R.-K. Lee, Phys. Rev. A: At., Mol., Opt. Phys. 84 (1), 013813 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).MATHGoogle Scholar
  8. 8.
    K. J. Vahala, Nature (London) 424, 839 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    R. K. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, J. Opt. Soc. Am. B 17 (4), 629 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    J. Vučkovič, M. Lončar, H. Mabuchi, and A. Scherer, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65 (1), 016608 (2001).CrossRefGoogle Scholar
  11. 11.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science (Washington) 316, 1007 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A. Amo, J. Lefrére, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, Nat. Phys. 5, 805 (2009).CrossRefGoogle Scholar
  13. 13.
    M. A. Kalitievskii, Tech. Phys. Lett. 23 (2), 120 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    V. G. Golubev, A. A. Dukin, A. V. Medvedev, A. B. Pevtsov, A. V. Sel’kin, and N. A. Feoktistov, Semiconductors 37 (7), 832 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vučkovič, Phys. Rev. Lett. 104 (7), 073904 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Rumyantsev, S. A. Fedorov, K. V. Gumennyk, M. V. Sychanova, and A. V. Kavokin, Nat. Sci. Rep. 4, 6945 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    V. V. Rumyantsev, S. A. Fedorov, K. V. Gumennyk, and M. V. Sychanova, Phys. B (Amsterdam, Neth.) 461, 32 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    J. R. Anglin and A. Vardi, Phys. Rev. A: At., Mol., Opt. Phys. 64 (1), 013605 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    V. A. Averchenko, A. P. Alodzhants, S. M. Arakelyan, S. N. Bagaev, E. A. Vinogradov, V. S. Egorov, A. I. Stolyarov, and I. A. Chekhonin, Kvantovaya Elektron. (Moscow) 36, 532 (2006).CrossRefGoogle Scholar
  20. 20.
    V. M. Agranovich, The Theory of Excitons (Nauka, Moscow, 1968) [in Russian].Google Scholar
  21. 21.
    J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge University Press, Cambridge, 1979; Mir, Moscow, 1982).Google Scholar
  22. 22.
    V. F. Los’, Theor. Math. Phys. 73 (1), 1076 (1987).CrossRefGoogle Scholar
  23. 23.
    V. V. Rumyantsev and S. A. Fedorov, Opt. Spectrosc. 102 (1), 68 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    A. M. Kosevich, Physical Mechanics of Real Crystals (Naukova Dumka, Kiev, 1981) [in Russian].Google Scholar
  25. 25.
    P. D. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature (London) 450, 1214 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    D. Hou, B. Ning, J. Wu, Z. Wang, and J. Zhao, Appl. Phys. Lett. 102 (15), 151104 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, Optica 1 (1), 10 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Rumyantsev
    • 1
    • 2
  • S. A. Fedorov
    • 1
  • K. V. Gumennik
    • 1
  1. 1.Galkin Institute for Physics and EngineeringNational Academy of Sciences of UkraineDonetskUkraine
  2. 2.Mediterranean Institute of Fundamental PhysicsMarino, RomeItaly

Personalised recommendations