Advertisement

Physics of the Solid State

, Volume 59, Issue 4, pp 835–837 | Cite as

Equation of state for fullerite C60

Fullerenes

Abstract

A new equation of state for fullerite C60 is derived in the framework of the quantum-statistical method. This equation includes two Grüneisen parameters responsible for vibration–rotational and intramolecular contributions of fullerene molecules, which are represented in the form of isotropic quantum oscillators. The intramolecular vibrations of carbon atoms are described by the Debye heat capacity theory, and the cold contribution to the free energy is calculated using the Lennard–Jones pair potential for fullerene molecules. The theory is in a very good agreement with the experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. P. Meletov, G. Kourouklis, D. Christofilos, and S. Ves, J. Exp. Theor. Phys. 81 (4), 798 (1995).ADSGoogle Scholar
  2. 2.
    V. D. Blank, V. M. Levin, V. M. Prokhorov, G. A. Dubitskii, and N. R. Serebryanaya, J. Exp. Theor. Phys. 87 (4), 741 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. A. Osip’yan, V. E. Fortov, K. L. Kagan, V. V. Kveder, V. I. Kulakov, A. N. Kur’yanchik, R. K. Nikolaev, V. I. Postnov, and N. S. Sidorov, JETP Lett. 75 (11), 563 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. A. Osip’yan, B. V. Avdonin, K. L. Kagan, R. K. Nikolaev, V. I. Postnov, N. S. Sidorov, D. V. Shakhrai, A. F. Shestakov, V. V. Kveder, and V. E. Fortov, JETP Lett. 81 (9), 471 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    L. A. Girifalco, J. Phys. Chem. 96, 858 (1992).CrossRefGoogle Scholar
  6. 6.
    L. A. Girifalco, Phys. Rev. B: Condens. Matter 52, 9910 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    L. N. Yakub, Low Temp. Phys. 19 (6), 522 (1993).ADSGoogle Scholar
  8. 8.
    V. I. Zubov, N. P. Tretiakov, J. F. Sanchez, and A. A. Caparica, Phys. Rev. B: Condens. Matter 53, 1208 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Zubov, J. F. Sanchez-Ortiz, N. P. Tretiakov, and I. V. Zubov, Phys. Rev. B: Condens. Matter 55, 6747 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    Sun Jiu-xun, Phys. B (Amsterdam, Neth.) 381, 34 (2006).CrossRefGoogle Scholar
  11. 11.
    K. V. Khishchenko, V. V. Milyavskiy, A. V. Utkin, V. V. Yakushev, A. Z. Zhuk, and V. E. Fortov, Diamond Relat. Mater. 16, 1204 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Milyavskii, A. V. Utkin, K. V. Khishchenko, V. V. Yakushev, A. Z. Zhuk, and V. E. Fortov, Fiz. Tekh. Vys. Davlenii 17 (2), 36 (2007).Google Scholar
  13. 13.
    T. Horikawa, T. Kinoshita, K. Suito, and A. Onodera, Solid State Commun. 114, 121 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    S. Sh. Rekhviashvili, Phys. Solid State 55 (7), 1525 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    S. Sh. Rekhviashvili, Tech. Phys. Lett. 38 (11), 1007 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Eletskii and B. M. Smirnov, Phys.—Usp. 36 (3), 202 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    A. Lundin, B. Sundqvist, P. Skogland, Å. Fransson, and S. Pettersson, Solid State Commun. 84 (9), 879 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    M. N. Magomedov, Phys. Solid State 47 (4), 785 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Applied Mathematics and AutomationNalchik, Kabardino-BalkariaRussia

Personalised recommendations