Advertisement

Physics of the Solid State

, Volume 59, Issue 4, pp 694–702 | Cite as

Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4 + δ

  • E. Yu. Pikalova
  • D. A. Medvedev
  • A. F. Khasanov
Semiconductors

Abstract

Ca-substituted layered nickelates with a general Pr2–x Ca x NiO4 + δ composition (x = 0–0.7, Δx = 0.1) were prepared in the present work and their structural and physic-chemical properties were investigated in order to select the most optimal materials, which can be used as cathodes for solid oxide fuel cells. With an increase in Ca content in Pr2–x Ca x NiO4 + δ the following tendencies were observed: (i) a decrease in the concentration of nonstoichiometric oxygen (δ), (ii) a decrease in the unit cell parameters and volume, (iii) stabilization of the tetragonal structure, (iv) a decrease of the thermal expansion coefficients, and (v) enchancement of thermodynamic stability and compatibility with selected oxygen- and proton-conducting electrolytes. The Pr1.9Ca0.1NiO4 + δ material, having highest δ value, departs from the general “properties–composition” dependences ascertained. This indicates that oxygen non-stoichiometry has determining influence on the functional properties of layered nickelates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ya. Istomin and E. V. Antipov, Russ. Chem. Rev. 82, 686 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Chen, W. Zhou, D. Ding, M. Liu, F. Ciucci, M. Tade, and Z. Shao, Adv. Energy Mater. 5, 201500537 (2015).Google Scholar
  3. 3.
    M. M. Kuklja, E. A. Kotomin, R. Merkle, Yu. A. Mastrikov, and J. Maier, Phys. Chem. Chem. Phys. 15, 5443 (2013).CrossRefGoogle Scholar
  4. 4.
    E. Boehm, J.-M. Bassat, P. Dordor, F. Mauvy, J. C. Grenier, and Ph. Stevens, Solid State Ionics 176, 2717 (2005).CrossRefGoogle Scholar
  5. 5.
    L. Minervini, R. W. Grimes, J. Kilner, and K. E. Sickafus, J. Mater. Chem. 10, 2349 (2000).CrossRefGoogle Scholar
  6. 6.
    J.-M. Bassat, M. Burriel, O. Wahyudi, R. Castaing, M. Ceretti, P. Veber, I. Weill, A. Villesuzanne, J.-C. Grenier, W. Paulus, and J. A. Kilner, J. Phys. Chem. C 117, 26466 (2013).CrossRefGoogle Scholar
  7. 7.
    P. Batocchi, F. Mauvy, S. Fourcade, and M. Parco, Electrochim. Acta 145, 1 (2014).CrossRefGoogle Scholar
  8. 8.
    X. D. Zhou, J. W. Templeton, Z. Nie, H. Chen, J. W. Stevenson, and L. R. Pederson, Electrochim. Acta 71, 44 (2012).CrossRefGoogle Scholar
  9. 9.
    C. Ferchaud, J. C. Grenier, Y. Zhang-Steenwinkel, M. M. A. van Tuel, F. P. F. van Berkel, and J. M. Bassat, J. Power Sources 196, 1872 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Grimaud, F. Mauvy, J. M. Bassa, S. Fourcade, L. Rocheron, M. Marrony, and J. C. Grenier, J. Electrochem. Soc. B 159, 683 (2012).CrossRefGoogle Scholar
  11. 11.
    B. Philippeau, F. Mauvy, C. Mazataud, S. Fourcade, and J.-C. Grenier, Solid State Ionics 249–250, 17 (2013).CrossRefGoogle Scholar
  12. 12.
    G. Taillades, J. Dailly, M. Taillades-Jacquin, F. Mauvy, A. Essouhmi, M. Marrony, C. Lalanne, S. Fourcade, D. J. Jones, J.-C. Grenier, and J. Roziére, Fuel Cells 10, 166 (2010).Google Scholar
  13. 13.
    P. Odier, C. Allançon, and J. M. Bassat, J. Solid State Chem. 153, 381 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    V. Vibhu, J.-M. Bassat, A. Flura, C. Nicollet, J.-C. Grenier, and A. Rougier, ECS Trans. 68, 825 (2015).CrossRefGoogle Scholar
  15. 15.
    C. Allançon, P. Odier, J. M. Bassat, and J. P. Loup, J. Solid State Chem. 131, 167 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    J. F. Yang, J. G. Cheng, Q. M. Jiang, Y. F. Wang, R. Wang, and J. F. Gao, Int. J. Hydrogen Energy 37, 1746 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Shen, H. Zhao, J. Xu, X. Zhang, K. Zheng, and K. Świerczek, Int. J. Hydrogen Energy 39, 1023 (2014).CrossRefGoogle Scholar
  18. 18.
    V. Vashook, E. Girdauskaite, J. Zosel, T.-L. Wen, H. Ullmann, and U. Guth, Solid State Ionics 177, 1163 (2006).CrossRefGoogle Scholar
  19. 19.
    A. P. Khandale, J. D. Punde, and S. S. Bhoga, J. Solid State Electrochem. 17, 617 (2013).CrossRefGoogle Scholar
  20. 20.
    K. Ruck, M. Ruck, and G. Krabbes, Mater. Res. Bull. 32, 933 (1997).CrossRefGoogle Scholar
  21. 21.
    K. Ruck, G. Krabbers, and I. Vogel, Mater. Res. Bull. 34, 1689 (1999).CrossRefGoogle Scholar
  22. 22.
    J. P. Tang, R. I. Dass, and A. Manthiram, Mater. Res. Bull. 35, 411 (2000).CrossRefGoogle Scholar
  23. 23.
    H.-S. Kim and H.-I. Yoo, Solid State Ionics 232, 129 (2013).CrossRefGoogle Scholar
  24. 24.
    A. A. Kolchugin, E. Yu. Pikalova, N. M. Bogdanovich, D. I. Bronin, S. M. Pikalov, S. V. Plaksin, M. V. Ananyev, and V. A. Eremin, Solid State Ionics 288, 48 (2016).CrossRefGoogle Scholar
  25. 25.
    R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).ADSCrossRefGoogle Scholar
  26. 26.
    V. Sadykov, Yu. Okhlupin, N. Yeremeev, Z. Vinokurov, A. Shmakov, V. Belyaev, N. Uvarov, and J. Mertens, Solid State Ionics 262, 918 (2014).CrossRefGoogle Scholar
  27. 27.
    J. D. Sullivan and D. J. Buttrey, J. Solid Sate Chem. 94, 337 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    V. Vibhu, A. Rougier, C. Nicollet, A. Flura, J.-C. Grenier, and J.-M. Bassat, Solid State Ionics 278, 327 (2015).CrossRefGoogle Scholar
  29. 29.
    A. V. Kovalevsky, V. V. Kharton, A. A. Yaremchenko, Y. V. Pivak, E. V. Tsipis, S. O. Yakovlev, A. A. Markov, E. N. Naumovich, and J. R. Frade, J. Electroceram. 18, 205 (2007).CrossRefGoogle Scholar
  30. 30.
    V. K. Gil’derman and B. D. Antonov, Elektrokhim. Energ. 12, 59 (2012).Google Scholar
  31. 31.
    A. V. Kuzmin, V. P. Gorelov, B. T. Melekh, M. Glerup, and F. W. Poulsen, Solid State Ionics 162–163, 13 (2003).CrossRefGoogle Scholar
  32. 32.
    S. R. Bishop, D. Marrocchelli, C. Chatzichristodoulou, N. H. Perry, M. B. Mogensen, H. L. Tuller, and E. D. Wachsman, Annu. Rev. Mater. Res. 44, 205 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    V. M. Goldschmidt, Naturwissenschaften 140, 477 (1926).ADSCrossRefGoogle Scholar
  34. 34.
    V. G. Vlasenko, S. V. Zubkov, and V. A. Shuvaeva, Phys. Solid State 55 (1), 101 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    C.-Y. Shi, Z.-B. Hu, and Y.-M. Hao, J. Alloys Compd. 509, 1333 (2011).CrossRefGoogle Scholar
  36. 36.
    R. I. Hines, PhD Thesis (Bristol, 1997).Google Scholar
  37. 37.
    N. L. Allan, M. J. Dayer, D. T. Kulp, and W. C. Mackrodt, J. Mater. Chem. 1, 1035 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. Yu. Pikalova
    • 1
    • 2
  • D. A. Medvedev
    • 1
    • 2
  • A. F. Khasanov
    • 1
    • 2
  1. 1.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations