Physics of the Solid State

, Volume 59, Issue 4, pp 661–666 | Cite as

Dynamic fracture of the surface of an aluminum alloy under conditions of high-speed erosion

  • Yu. V. Petrov
  • S. A. Atroshenko
  • N. A. Kazarinov
  • A. D. Evstifeev
  • V. Yu. Solov’ev
Metals

Abstract

The kinetics of fracture and deformation of the standard aluminum alloy AD1 and a similar alloy subjected to severe plastic deformation by high-pressure torsion under conditions of high-speed erosion has been investigated. It has been shown that, with an increase in the loading rate, the fraction of the brittle component on the fracture surface of the standard material, as well as the thickness of the damaged layer, increases more significantly than that for the material after the severe plastic deformation by high-pressure torsion. A relationship of the surface roughness of the material after the erosion with the loading rate and the thickness of the erosion-damaged layer has been established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. V. Petrov and V. I. Smirnov, Tech. Phys. 55 (2), 230 (2010).CrossRefGoogle Scholar
  2. 2.
    A. N. Berezkin, S. I. Krivosheev, Yu. V. Petrov, and A. A. Utkin, Dokl. Phys. 45 (11), 617 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Bratov, A. A. Gruzdkov, S. I. Krivosheev, and Yu. V. Petrov, Dokl. Phys. 49 (5), 338 (2004).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Valiev, Nat. Mater. 3 (8), 511 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    Q. Wei, H. T. Zhang, B. E. Schuster, K. T. Ramesh, R. Z. Valiev, L. J. Kecskes, R. J. Dowding, L. Magness, and K. Cho, Acta Mater. 54 (15), 4079 (2006).CrossRefGoogle Scholar
  6. 6.
    Y. Estrin and A. Vinogradov, Int. J. Fatigue 32, 898 (2010).CrossRefGoogle Scholar
  7. 7.
    C. T. Wang, N. Gao, M. G. Gee, R. J. K. Wood, and T. G. Langdon, J. Mater. Sci. 48 (13), 4742 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    M. Y. Murashkin, I. Sabirov, V. U. Kazykhanov, E. V. Bobruk, A. A. Dubravina, and R. Z. Valiev, J. Mater. Sci. 48 (13), 4501 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    V. A. Lashkov, Inzh.-Fiz. Zh. 60, 197 (1991).Google Scholar
  10. 10.
    S. A. Atroshenko and V. I. Smirnov, Morsk. Intellektual’nye Tekhnol. No. 2, 32 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. V. Petrov
    • 1
    • 2
  • S. A. Atroshenko
    • 1
    • 2
  • N. A. Kazarinov
    • 2
  • A. D. Evstifeev
    • 2
  • V. Yu. Solov’ev
    • 2
  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations