Physics of the Solid State

, Volume 59, Issue 4, pp 801–807 | Cite as

Structural, optical, and electrical properties of Cu2SnS3 thin films produced by sol gel method

  • I. G. Orletskii
  • M. N. Solovan
  • F. Pinna
  • G. Cicero
  • P. D. Mar’yanchuk
  • E. V. Maistruk
  • E. Tresso
Surface Physics and Thin Films

Abstract

The structural, optical, and electrical properties of p-type Cu2SnS3 thin films produced by the deposition of a dimethylsulfoxide-based sol gel solution using the centrifugation on substrates with subsequent heat treatment of the layers formed have been studied. The conditions of formation of the films using low-temperature short-time treatments in open atmosphere and a final annealing in a low vacuum (0.1 Pa) have been analyzed. The crystallite sizes D ~ 42 nm in the polycrystalline films have been found using X-ray phase analysis. Their compositions have been confirmed using the Raman spectra and the energy-dispersive X-ray analysis. The optical forbidden band width of direct allowed (Egd ~ 1.25 eV) and direct forbidden (Egdf ≈ 0.95 eV) optical transitions have been determined as a result of the light transmission and absorption. Based on the study of the electrical properties using a model of polycrystalline materials, the validity of the produced films with resistivity ρ ≈ 0.21 Ω cm, the hole concentration p0 ≈ 1.75 × 1019 cm–3, and the effective mobility μp ≈ 1.67 cm2/(V s) for manufacturing solar cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. T. Zhai, S. Y. Chen, J. H. Yang, H. J. Xiang, X. G. Gong, A. Walsh, J. Kang, and S. H. Wei, Phys. Rev. B: Condens. Matter 84, 075213 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    D. Avellaneda, M. T. S. Nair, and P. K. Nair, J. Electrochem. Soc. 157, D346 (2010).CrossRefGoogle Scholar
  3. 3.
    P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, J. Phys. D: Appl. Phys. 43, 215403 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, and H. Araki, Jpn. J. Appl. Phys. 54, 08KC06 (2015).CrossRefGoogle Scholar
  6. 6.
    M. Nakashima, J. Fujimoto, T. Yamaguchi, and M. Izak, Appl. Phys. Express 8, 042303 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    L. L. Baranowski, K. McLaughlin, P. Zawadzki, S. Lany, A. Norman, H. Hempel, R. Eichberger, T. Unold, E. S. Toberer, and A. Zakutaev, Phys. Rev. Appl. 4, 044017 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    S. Dias and S. B. Krupanidhi, AIP Adv. 6, 025217 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    S. Rabaoui, H. Dahman, S. Dekhil, K. Omri, A. Alyamani, and L. El Mir, J. Mater. Sci.: Mater. Electron. 26, 8588 (2015).Google Scholar
  10. 10.
    D. Tiwari, T. K. Chaudhuri, T. Shripathi, U. Deshpande, and R. Rawat, Sol. Energy Mater. Sol. Cells 113, 165 (2013).CrossRefGoogle Scholar
  11. 11.
    V. V. Brus, I. S. Babichuk, I. G. Orletskyi, P. D. Maryanchuk, V. O. Yukhymchuk, V. M. Dzhagan, I. B. Yanchuk, M. M. Solovan, and I. V. Babichuk, Appl. Opt. B 55, 158 (2016).CrossRefGoogle Scholar
  12. 12.
    Z. Jia, Q. Chen, J. Chen, T. Wang, Z. Li, and X. Dou, RSC Adv. 5, 28885 (2015).CrossRefGoogle Scholar
  13. 13.
    S. Rabaoui, H. Dahman, N. B. Mansour, and L. El Mir, J. Mater. Sci.: Mater. Electron. 26, 1119 (2015).Google Scholar
  14. 14.
    H. Xin, J. K. Katahara, I. L. Braly, and H. W. Hillhouse, Adv. Energy Mater. 4, 1301823 (2014).CrossRefGoogle Scholar
  15. 15.
    Dimethyl Sulfoxide Producers Association (US Environmental Protection Agency, Leesburg, 2003), Report No. 201-14721A.Google Scholar
  16. 16.
    V. V. Brus and P. D. Maryanchuk, Appl. Phys. Lett. 104, 173501 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    Powder Diffraction File Card 27-0196 (Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Swarthmore, Philadelphia, United States).Google Scholar
  18. 18.
    U. Holzwarth and N. Gibson, Nat. Nanotecnol. 6, 534 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  20. 20.
    P. A. Fernandes, P. M. P. Salome, and A. F. da Cunha, J. Alloys Compd. 509, 7600 (2011).CrossRefGoogle Scholar
  21. 21.
    V. P. G. Vani, M. V. Reddy, and K. T. R. Reddy, Condens. Matter Phys. 2013, 142029 (2013).Google Scholar
  22. 22.
    P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, Thin Solid Films 517, 2519 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    H. Dahman, S. Arrabaoui, A. Alyamani, and L. El Mir, Vaccum 101, 208 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    J. Y. W. Seto, J. Appl. Phys. 46, 5247 (1975).ADSCrossRefGoogle Scholar
  25. 25.
    G. Baccarani and B. Ricco, J. Appl. Phys. 49, 5565 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    I. G. Orletskii, P. D. Mar’yanchuk, M. N. Solovan, V. V. Brus, E. V. Maistruk, D. P. Kozyarskii, and S. L. Abashin, Phys. Solid State 58 (5), 1058 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    I. G. Orletskii, P. D. Mar’yanchuk, M. N. Solovan, E. V. Maistruk, and D. P. Kozyarskii, Tech. Phys. Lett. 42 (3), 291 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    A. Crovetto, R. Chen, R. B. Ettlinger, A. C. Cazzaniga, J. Schou, C. Persson, and O. Hansen, Solar Energy Mater. Solar Cells 154, 121 (2016).CrossRefGoogle Scholar
  29. 29.
    C. H. Seager, J. Appl. Phys. 52, 3960 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. G. Orletskii
    • 1
  • M. N. Solovan
    • 1
  • F. Pinna
    • 2
  • G. Cicero
    • 2
  • P. D. Mar’yanchuk
    • 1
  • E. V. Maistruk
    • 1
  • E. Tresso
    • 2
  1. 1.Yuriy Fedkovych Chernivtsi National UniversityChernivtsiUkraine
  2. 2.Politecnico di TorinoTorinoItaly

Personalised recommendations