Advertisement

Physics of the Solid State

, Volume 59, Issue 4, pp 820–828 | Cite as

Equilibrium structures of carbon diamond-like clusters and their elastic properties

  • D. S. Lisovenko
  • Yu. A. Baimova
  • L. Kh. Rysaeva
  • V. A. Gorodtsov
  • S. V. Dmitriev
Atomic Clusters

Abstract

Three-dimensional carbon diamond-like phases consisting of sp 3-hybridized atoms, obtained by linking of carcasses of fullerene-like molecules, are studied by methods of molecular dynamics modeling. For eight cubic and one hexagonal diamond-like phases on the basis of four types of fullerene-like molecules, equilibrium configurations are found and the elastic constants are calculated. The results obtained by the method of molecular dynamics are used for analytical calculations of the elastic characteristics of the diamond- like phases with the cubic and hexagonal anisotropy. It is found that, for a certain choice of the dilatation axis, three of these phases have negative Poisson’s ratio, i.e., are partial auxetics. The variability of the engineering elasticity coefficients (Young’s modulus, Poisson’s ratio, shear modulus, and bulk modulus) is analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Greshnyakov, E. A. Belenkov, and V. M. Berezin, Crystal Structure and Properties of Carbon Diamond-Like Phases (South Ural State University, Chelyabinsk, 2012) [in Russian].Google Scholar
  2. 2.
    V. A. Plotnikov, D. G. Bogdanov, and S. V. Makarov, Detonation Nanodiamond (Altai State University, Barnaul, 2014) [in Russian].Google Scholar
  3. 3.
    V. V. Pokropivny and A. V. Pokropivny, Phys. Solid State 46 (2), 392 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    V. L. Bekenev and V. V. Pokropivny, Phys. Solid State 48 (7), 1405 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    J. Crain, S. J. Clark, G. J. Ackland, M. C. Payne, V. Milman, P. D. Hatton, and B. J. Reid, Phys. Rev. B: Condens. Matter 49 (8), 5329 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 55 (8), 1754 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57 (1), 205 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    V. A. Greshnyakov and E. A. Belenkov, J. Exp. Theor. Phys. 113 (1), 86 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57 (6), 1253 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    H. S. Domingos, J. Phys.: Condens. Matter. 16, 9083 (2004).ADSGoogle Scholar
  11. 11.
    E. A. Belenkov and I. V. Shakhova, Phys. Solid State 53 (11), 2385 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    E. A. Belenkov and A. E. Kochengin, Phys. Solid State 57 (10), 2126 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57 (11), 2331 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    E. A. Belenkov, M. M. Brzhezinskaya, and V. A. Greshnyakov, Diamond Relat. Mater. 50, 9 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    E. A. Belenkov and V. A. Greshnyakov, J. Exp. Theor. Phys. 119 (1), 101 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    R. R. Mulyukov and Yu. A. Baimova, Carbon Nanomaterials (Bashkir State University, Ufa, 2015) [in Russian].Google Scholar
  17. 17.
    K. A. Krylova, Yu. A. Baimova, S. V. Dmitriev, and R. R. Mulyukov, Phys. Solid State 58 (2), 394 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    R. K. Roy and K.-R. Lee, J. Biomed. Mater. Res. B 83 (1), 72 (2007).CrossRefGoogle Scholar
  19. 19.
    X. Li and D. H. C. Chua, in Ceramic Integration and Joining Technologies: From Macro to Nanoscale, Ed. by M. Singh, T. Ohji, R. Asthana, and S. Mathur (Wiley, Hoboken, 2011), p. 641.Google Scholar
  20. 20.
    W. I. Milne, Semicond. Sci. Technol. 18, S81 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    J. Robertson, Mater. Sci. Eng., R 37, 129 (2002).CrossRefGoogle Scholar
  22. 22.
    G. Van Lier, C. Van Alsenoy, V. Van Doren, and P. Geerligs, Chem. Phys. Lett. 326, 181 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    F. Scarpa, S. Adhikari, and C. Y. Wang, J. Phys. D: Appl. Phys. 42, 142002 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    A. Smolyanitsky and V. K. Tewary, Nanotechnology 22, 085703 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, and S. Stafstrom, Nature (London) 392, 362 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    S. P. Tokmakova, Phys. Status Solidi B 242, 721 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    A. Norris, Proc. R. Soc. London, Ser. A 462, 3385 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    T. Paszkiewicz and S. Wolski, Phys. Status Solidi B 244, 966 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    T. Paszkiewicz and S. Wolski, J. Phys.: Conf. Ser. 104, 012038 (2008).Google Scholar
  30. 30.
    A. C. Branka, D. M. Heyes, and K. W. Wojciechowski, Phys. Status Solidi B 246, 2063 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    R. V. Goldshtein, V. A. Gorodtsov, and D. S. Lisovenko, Mech. Solids 45 (4), 529 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    R. V. Goldshtein, V. A. Gorodtsov, and D. S. Lisovenko, Dokl. Phys. 56 (7), 399 (2011).CrossRefGoogle Scholar
  33. 33.
    A. C. Branka, D. M. Heyes, and K. W. Wojciechowski, Phys. Status Solidi B 248, 96 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    A. C. Branka, D. M. Heyes, Sz. Mackowiak, S. Pieprzyk, and K. W. Wojciechowski, Phys. Status Solidi B 249, 1373 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    R. V. Goldstein, V. A. Gorodtsov, and D. S. Lisovenko, Phys. Status Solidi B 250 (10), 2038 (2013).Google Scholar
  36. 36.
    V. V. Krasavin and A. V. Krasavin, Phys. Status Solidi B 251, 2314 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    R. V. Goldshtein, V. A. Gorodtsov, D. S. Lisovenko, and M. A. Volkov, Phys. Mesomech. 17 (2), 97 (2014).CrossRefGoogle Scholar
  38. 38.
    R. V. Gol’dshtein, V. A. Gorodtsov, D. S. Lisovenko, and M. A. Volkov, Lett. Mater. 5 (4), 409 (2015).CrossRefGoogle Scholar
  39. 39.
    N. P. Kobelev, R. K. Nikolaev, Ya. M. Soifer, and S. S. Khasanov, Phys. Solid State 40 (1), 154 (1998).ADSCrossRefGoogle Scholar
  40. 40.
    N. P. Kobelev, Phys. Solid State 44 (1), 195 (2002).ADSCrossRefGoogle Scholar
  41. 41.
    N. P. Kobelev, R. K. Nikolaev, N. S. Sidorov, and Ya.M. Soifer, Phys. Solid State 44 (3), 429 (2002).ADSCrossRefGoogle Scholar
  42. 42.
    N. P. Kobelev, R. K. Nikolaev, N. S. Sidorov, and Ya.M. Soifer, Phys. Solid State 43 (12), 2344 (2001).ADSCrossRefGoogle Scholar
  43. 43.
    http://lammps.sandia.gov/Google Scholar
  44. 44.
    S. Stuart, A. Tutein, and J. Harrison, J. Chem. Phys. 112, 6472 (2000).ADSCrossRefGoogle Scholar
  45. 45.
    W. Brenner, Phys. Rev. B: Condens. Matter 42, 9458 (1992).ADSCrossRefGoogle Scholar
  46. 46.
    A. K. Singh and R. G. Hennig, Phys. Rev. B: Condens. Matter 87, 094112 (2013).ADSCrossRefGoogle Scholar
  47. 47.
    S. Costamagna, M. Neek-Amal, J. H. Los, and F.M. Peeters, Phys. Rev. B: Condens. Matter 86, 041408 (2012).ADSCrossRefGoogle Scholar
  48. 48.
    J. A. Baimova, B. Liu, S. V. Dmitriev, N. Srikanth, and K. Zhou, Phys. Chem. Chem. Phys. 16, 19505 (2014).CrossRefGoogle Scholar
  49. 49.
    Yu. A. Baimova, R. T. Murzaev, and S. V. Dmitriev, Phys. Solid State 56 (10), 2010 (2014).CrossRefGoogle Scholar
  50. 50.
    L. Kh. Rysaeva and Yu. A. Baimova, Fundam. Probl. Sovrem. Materialoved. 12 (4), 439 (2015).Google Scholar
  51. 51.
    Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystal Physics (Nauka, Moscow, 1975, Mir, Moscow, 1982).Google Scholar
  52. 52.
    R. V. Goldshtein, V. A. Gorodtsov, and D. S. Lisovenko, Lett. Mater. 2 (1), 21 (2012).CrossRefGoogle Scholar
  53. 53.
    R. V. Goldshtein, V. A. Gorodtsov, and D. S. Lisovenko, Lett. Mater. 1 (3), 127 (2011).CrossRefGoogle Scholar
  54. 54.
    R. V. Goldshtein, V. A. Gorodtsov, and D. S. Lisovenko, Dokl. Phys. 56 (12), 602 (2011).CrossRefGoogle Scholar
  55. 55.
    K. W. Wojciechowski, Phys. Lett. A 137 (1–2), 60 (1989).ADSCrossRefGoogle Scholar
  56. 56.
    K. V. Tretiakov and K. W. Wojciechowski, Phys. Status Solidi B 250, 2020 (2013).Google Scholar
  57. 57.
    J. N. Grima, S. Winczewski, L. Mizzi, M. C. Grech, R. Cauchi, R. Gatt, D. Attard, K. W. Wojciechowski, and J. Rybicki, Adv. Mater. (Weinheim) 27 (8), 1455 (2015).CrossRefGoogle Scholar
  58. 58.
    K. L. Alderson, A. Alderson, J. N. Grima, and K. W. Wojciechowski, Phys. Status Solidi B 251 263 (2014).ADSCrossRefGoogle Scholar
  59. 59.
    H. J. McSkimin and P. Andreatch, J. Appl. Phys. 43, 2944 (1972).ADSCrossRefGoogle Scholar
  60. 60.
    M. Grimsditch and A. K. Ramdas, Phys. Rev. B: Solid State 11, 3139 (1975).ADSCrossRefGoogle Scholar
  61. 61.
    E. S. Zouboulis, M. Grimsditch, A. K. Ramdas, and S. Rodrigues, Phys. Rev. B: Condens. Matter 57, 2889 (1998).ADSCrossRefGoogle Scholar
  62. 62.
    A. Migliori, H. Ledbetter, R. G. Leisure, and J. B. Betts, J. Appl. Phys. 104, 053512 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. S. Lisovenko
    • 1
  • Yu. A. Baimova
    • 2
    • 3
  • L. Kh. Rysaeva
    • 2
  • V. A. Gorodtsov
    • 1
  • S. V. Dmitriev
    • 2
    • 4
  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Metal Superplasticity ProblemsRussian Academy of SciencesUfa, BashkortostanRussia
  3. 3.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  4. 4.National Research Tomsk State UniversityTomskRussia

Personalised recommendations